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Abstract. Alternative community analyses, based on quanti-
tative and presence/absence data, are comparable logically if
the data type is the only factor responsible for differences
among results. For presence/absence indices that consider
mutual absences, no quantitative alternatives are known. To
facilitate such comparisons, a new family of similarity coeffi-
cients is proposed for abundance data. Formally, this extension
is achieved by generalizing the four cells of the usual 2 × 2
contingency table to the quantitative case. This implies an
expanded meaning of absence: for a given species at a given
site it is understood as the difference between the actual value
and the maximum detected in the entire study. The corre-
spondence between 10 presence/absence coefficients and their
quantitative counterparts is evaluated by graphical compari-
sons based on artificial data. The behaviour of the new func-
tions is also examined using field data representing post-fire
regeneration processes in grasslands and a chronosequence
pertaining to forest regeneration after clear-cut. The examples
suggest that the new coefficients are most informative for data
sets with low beta-diversity and temporal background changes.

Keywords: Binary data; Mutual absence; Ordered compari-
son case series; Ordination; Resemblance; Site dissimilarity.

Introduction

Ordinations and classifications of community data
commonly start with symmetric matrices representing
the resemblance structure of the study objects. Resem-
blance, as a general term, may refer to a wide range of
measures, such as similarity, dissimilarity, proximity,
distance, association or correlation (cf. Orlóci 1978;
Ludwig & Reynolds 1988). The literature abounds
with hundreds of propositions to measure ecological
resemblance, and the choice among them is governed
by several factors. The first property to consider is
related to the measurement scale of the original vari-
ables describing the objects. Two scale types have
received particular attention in ecological data analy-
sis, namely the presence/absence and the ratio scale
(for more details, see Anderberg 1973 and Orlóci 1978).
The presence/absence scale, with its two possible states,
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is the simplest of all and is suitable for the floristic
approach in which interest is focused on species lists for
landscape units, study sites or sample plots (see, for
example, Kuusinen & Siitonen 1998; Dalling & Denslow
1998; Roberts & Wuest 1999). The ratio-scale (also
called ‘relative-scale quantitative’, Legendre & Legendre
1998) variables carry much more information. This meas-
urement scale has (1) an infinite number of possible
states, (2) a constant interval between any two adjacent
units, and (3) a natural zero point. The second property
implies that differences are meaningful, whereas the third
property allows calculating the ratio of any two values.
Species performance, if expressed as percentage cover,
biomass or counts (henceforth collectively termed as
abundance) is of this type; it provides a basis for poten-
tially more sophisticated statistical analyses of ecological
phenomena (e.g. Onipchenko et al. 1998). The choice
between these two strikingly different levels of resolution
is not always simple, and it is very often the case that one
wishes to compare results, e.g. classifications or
ordinations derived from both presence/absence and
abundance versions of the same data set (for example,
Stanek 1973; Neldner & Howitt 1991; Núñez-Olivera et
al. 1995). Strong congruence of alternative results im-
plies that data structure can be sufficiently represented
on a presence/absence basis, and the use of finer scales
of measurement is unnecessary. On the other hand,
disagreement of results is an indication that the quantita-
tive component in the data is significant. Conclusions
derived from such comparisons may have far reaching
consequences in pilot surveys before the main sampling
is launched.

The question to be addressed first is under which
circumstances are comparisons of results between the
presence/absence and quantitative levels valid? In the
methodological sequence from raw data to the final
results, one is faced at each stage with a multitude of
choices regarding the data type, data standardization,
resemblance coefficient, and ordination and classifica-
tion method, just to mention the most critical ones
(see Podani 1989, 1992 for a review). The relative
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importance of decisions upon the final results and our
conclusions can only be assessed by comparative analy-
sis. If interest lies in detecting incongruence of results
caused by differences in the input data type, then all
other factors must be kept invariant. That is, if we wish
to compare, say, ordinations based on the use of pres-
ence/absence and quantitative data, the resemblance
function must be the same to eliminate the confounding
effect that would arise from differences between the
resemblance indices themselves (Kenkel & Orlóci 1986,
‘elementary comparisons’ of Podani 1989). For exam-
ple, if the resemblance matrix is obtained by Faith’s
(1983) binary similarity index (Eq. 9a, below) for pres-
ence/absence data, then the ratio scale version of the
same data set should be processed using a coefficient
entirely consistent with our previous choice. A quantita-
tive counterpart of this presence/absence coefficient is
to be found, however, and we wish to emphasize that
this problem is very far from being trivial. Very often,
the coefficients are not selected carefully, because the
presence/absence and quantitative coefficients used in
the comparison are not logical counterparts of each
other (e.g., Stamol 1991; Pinder & Rosso 1998), al-
though there are lucky choices as well (e.g. Neldner &
Howitt 1991; Jutila 1998). The difficulty is that a wide
range of presence/absence coefficients used in ecologi-
cal data analysis have no exact counterparts in the
domain of quantitative coefficients, and this is particu-
larly true of measures that consider negative matches
(‘mutual absences’ or ‘double zeros’) in the calculation
of similarity. Curran & Swithinbank (1981) were among
the first to recognize this.

The above question leads to the second problem to
be discussed: how is mutual absence treated by different
formulations of site dissimilarity? The presence/absence
coefficients used in numerical ecology and related fields
provide three different solutions. In one group of coeffi-
cients, attributes get equal weight for mutual presence
and absence (‘symmetric’ coefficients, according to the
terminology of Legendre & Legendre 1998), with sim-
ple matching coefficient as a typical example. In an-
other group, mutual absences are completely ignored,
such as the Jaccard index (‘asymmetric’ coefficients).
There is a set of transitional forms providing opportu-
nity to give mutual absences an intermediate weight
(e.g. the Faith index, also ‘asymmetric’ in the above
sense). Aside from these exceptions, most resemblance
coefficients currently available for abundance data are
insensitive to mutual absences. However, if we wish to
make logical comparisons of results following our present
argumentation, quantitative analogues of presence/ab-
sence coefficients must be found. Furthermore, consid-
ering mutual absence for abundance data could allow a
refined analysis of vegetation structure in any situation

where ‘symmetric’ presence/absence coefficients are
also meaningful. The task is now to find the quantitative
analogue of mutual absence.

In our approach, mutual absence is not related merely
to species that are missing from both sites compared.
For each species, ‘potential abundance’ is defined as
the maximum amount reached by that species in the
study area, and is used as a reference basis to which all
abundance values are compared. If a species has much
lower quantities than this maximum in both sites in
question, then the difference from the maximum is
treated as absence. This allows extension of ‘symmet-
ric’ presence/absence coefficients to the quantitative
case. Formally, it is achieved by generalizing the well-
known 2 × 2 contingency table. The properties of the
new indices will be illustrated using a small artificial
data set and actual vegetation data coming from rock
grassland and oak forest communities.

A new family of quantitative coefficients

Extension of the contingency table

Presence/absence coefficients of similarity rely upon
the well-known 2 × 2 contingency table. Its cells express
the number of species present in both sites compared
(a), the number of species present only in either of them
(b and c) and the number of species absent from both
sites, but present in other sample plots (d). The sum n =
a + b + c + d is the total number of species present in the
entire collection of sample plots. Similarity indices that
use all these four frequencies include the simple match-
ing coefficient, the Russell-Rao index, Baroni-Urbani
- Buser’s indices, etc. (for a more complete survey, see
Lamont & Grant 1979; Huhta 1979; Janson & Vegelius
1981; Wolda 1981; Gower & Legendre 1986; Kenkel
& Booth 1987; Sgardelis & Stamou 1990; Legendre &
Legendre 1998). The quantitative indices operate com-
pletely differently: they are expressed in terms of the
original raw data scores. The difference in formalism
makes it difficult to find a one-to-one correspondence
between members of these two families of coefficients
so important for consistent comparisons. However, if
the 2 × 2 contingency table is redefined for quantitative
data such that each cell derives directly from the raw
scores, then practically all presence/absence coeffi-
cients can be rewritten to conform with quantitative
data - providing a new group of resemblance coeffi-
cients and facilitating logical comparison between re-
sults based on presence/absence and abundance data.

In the following extension of the contingency table
approach, capital letters A, B, C and D are used to make
reference to and distinction from the presence/absence
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variants a, b, c and d, respectively. Let X = {xij} denote
the data matrix of abundances and its general element
for row i and column j. Assume that the number of rows
(variables, species) is n, and the number of columns
(sites, objects, quadrats) is m. Then, for the pair of sites
j and k we define the following cell ‘frequencies’ (with-
out subscripts j and k, to follow the convention in the
presence/absence case).

A is the amount of abundance in which the two sites
agree, summed over all species, i.e.,

A = min ,ij ik
i

n

x x{ }
=
∑

1

(1)

B is the sum of abundances by which site j exceeds
site k, that is

B = max ,
ij ik ik

i

n

x x x{ }( )−
=
∑

1

(2)

C is the sum of abundances by which site k exceeds
site j, calculated as

C = max ,ij ik ij
i

n

x x x{ } −( )
=
∑

1
(3)

(B + C) thus reflects the total amount of disagreement
between the two sites being compared. Finally, D is
obtained as the sum of differences from the highest
values attained in the entire sample. For each species,
the maximum value over all sites is determined; it is
understood as ‘potential’ abundance that could be reached
in the study area. The higher of the two abundances
manifested in sites j and k is then subtracted from the
potential value, giving the ‘mutual absence’ in quantitative
terms. Then, summation over all species gives the desired
quantity. Formally, it is obtained by the expression

D = max max ,j ij ij ik
i

n

x x x{ } − { }( )
=
∑

1
(4)

One may verify easily that A, B, C and D reduce to
the respective cell frequencies of the 2 × 2 contingency
table if the data matrix contains only 1-s and 0-s.

Considering d in presence/absence coefficients has
the obvious consequence that addition of a site in which
new species occur modifies all previous resemblance
values (Goodall 1973). This is also true of D, although
no new species are needed to evoke this overall change
in the quantitative case. The resemblance structure modi-
fies if the newly added site supersedes the former maxima
for at least one species. This phenomenon is not new
in numerical community ecology: standardization by
species maxima or species totals has similar effect. In
some sense, therefore, incorporation of D in calcula-
tions of ecological resemblance is analogous to standardi-
zation. The rationale behind both the above definition of
D and standardization is that the comparison of any two

sites is ‘embedded’ in a reference basis provided by the
entire set of sample sites.

In the presence/absence case, each species contrib-
utes to a single cell of the contingency table. This is not
so with the above generalization, because a given spe-
cies may contribute to two or even three cells simultane-
ously; appearance in one cell only is the exception rather
than the rule. For example, if the abundance of a species
is 8 in site j and 12 in site k, whilst its maximum in the
entire sample is 32, then its contributions to A, C and D
are 8, 4 and 20, respectively. Note also that the sum of
the four cell values yields the total of ‘potential abun-
dances’, that is

A+B+C+D = N = max j ij
i

n

x{ }
=
∑

1
(5)

A categorization of resemblance coefficients

The following short overview of presence/absence
and quantitative coefficients will show that there are
many new possibilities of treating abundance data based
on the generalized contingency table notations. It be-
comes most obvious if we evaluate the correspondence
between presence/absence and quantitative coefficients.
When abundances are converted to presence/absence
data, many operations involved in the resemblance func-
tions become identical, therefore several quantitative
indices simplify to the same presence/absence coeffi-
cient. The correspondence between indices in this direc-
tion is always unambiguous; i.e., there is a subjective
mapping from the set of quantitative coefficients to the
binary indices. The reverse is not true: expansion of
presence/absence forms is often ambiguous or even
meaningless. In the following categorization, the no-
menclature of indices for which nor equations neither
citations are presented here follows Orlóci (1978),
Goodall (1973) and Kenkel & Booth (1987).

Group 1. Indices with D or d disregarded
Quantitative indices with summation over species as

the primary operation can be readily expressed in terms
of the new notation, and their correspondence to binary
indices is straightforward. Consider first a well-known
dissimilarity function, the Bray-Curtis dissimilarity
measure given by

 
BC jk

ij ik
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ij ik
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which can be rewritten in terms of (1) - (4) as
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BCjk =
2
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∑
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Its complement is 2A/[2A + B + C], with the Sørensen
index (2a/[2a + b + c]) as the binary counterpart. When
the Sørensen index is expanded back to quantitative
data, i.e., a, b and c are replaced by A, B and C, the
complement of the Bray-Curtis measure is obtained
readily. Other indices with a similar behaviour include
the Kulczyński’s formulae; these are given by 1/2(A/[A
+ B] + A/[A + C]) and 1/2(a/[a + b] + a/[a + c]). The
Manhattan metric (B + C and b + c) is another example
with clear relationship between the presence/absence
and quantitative forms.

For elucidating an ambiguous case, consider the
Ružička index (which is the complement of the
Marczewski-Steinhaus dissimilarity coefficient) and
Wishart’s (1969) similarity ratio (see also van der Maarel
1979). Both of them reduce to the Jaccard index in the
binary case (a/[a + b + c]). However, expansion of the
Jaccard index to the quantitative case yields only one of
these indices; according to formulae (1) - (4) the Ružička
index is reproduced. The similarity ratio cannot be ex-
pressed using our min-max-based definitions of A, B, C
and D. For similar reasons, formally replacing a, b and c
by A, B and C in the presence/absence versions of
Euclidean, chord and geodesic distance cannot repro-
duce the original formula for the quantitative case.

Group 2. New conversions for formulae considering d
This group contains coefficient pairs for which only

the presence/absence version was known (with one noted
exception, see below) – the quantitative variants are
derived according to the proposed new interpretation of
the contingency table. The presence/absence versions
are those that consider in some manner the number of
mutual absences (d). The simplest of these is the Russell-
Rao coefficient, a/[a + b + c + d], whose counterpart is
defined as

RRqjk = A / (A + B + C + D) =

min , maxij ik
i

n

j ij
i

n

x x x{ } { }
= =
∑ ∑

1 1
(8)

The coefficient proposed by Faith (1983) considers
both a and d of the contingency table, although asym-
metrically. This function and its quantitative transcrip-
tion are given by the following equations:

FA2jk = (a + 1/2d) / (a + b + c + d) (9a)

FA2qjk = (A + 1/2D) / (A + B + C + D) =

min , . max max , maxij ik j ij ij ik
i

n

i

n

j ij
i

n

x x x x x x{ } + { } − { }( )







 { }

== =
∑∑ ∑0 5

11 1

(9b)

Further coefficients, which consider double zeros
and can be expanded to the quantitative case using
‘frequencies’ (1)-(4) include the simple matching co-
efficient, the Rogers - Tanimoto index, Anderberg’s two
formulae, the Sokal-Sneath index, Baroni-Urbani &
Buser’s and Yule’s indices. It is left to the reader to
derive the sometimes complicated formulae; we do not
present them here to save space.

Relationships to known formulae

The Manhattan metric, mentioned already in Group
1, deserves some more attention here. Faith (1984) has
expressed this formula by its similarity counterpart
(A + D) with the present denotations. That is, Faith
implicitly considers mutual absences of abundances.
Besides a small typographic error, corrected afterwards
in Faith et al. (1987), Faith’s expression is identical to
the expansion of A + D based on formulae (1) and (4).
The possibility that D can be generalized to other coef-
ficients escaped the attention of the authors, however,
with one exception being their intermediate coefficient.
In this, the Manhattan metric (B + C) and the dissimilar-
ity version of Kendall’s (1970) minimum agreement
measure (B + C + D) are dynamically averaged using a
scale factor α:

INTCjk = α (B + C) + (1 – α) (B + C + D) (10)

With α = 0.5, this coefficient can be written as B + C +
0.5D which is apparently the numerator of the comple-
ment of the generalized version of Faith’s binary index
(Eq.  9a). This is the only quantitative formula published
so far which can be mentioned in the context of our
generalized contingency approach. Since the value of α
can be modified from 0 to 1, in effect we obtain an
infinite series of coefficients which implies a continuity
from a formula in which D does not contribute to the
dissimilarity at all (α = 1) to another in which D is
equally weighted with B and C (α = 0). Thus, with fully
balanced weighting we achieve a compromise, whose
advantages in the presence/absence case have been dis-
cussed in detail by Faith (1983).

There are further connections to existing formula-
tions. The complement of the Russell - Rao index, [B +
C + D]/N, is closely related to Kendall’s dissimilarity
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measure: only the range of the latter is normalized to
[0,1]. Similar relationship holds true for the comple-
ment of the simple matching coefficient, [B + C]/N, and
the Manhattan metric. This illustrates an important fact
that normalization of a coefficient introduces scale con-
version only. An advantage of normalization is that
clustering results become more directly comparable
based on hierarchical levels if all coefficients are nor-
malized.

At first glance, one may suggest that incorporation
of the D cell is similar in effect to data standardization
with the maximum (or the standard deviation) for each
species. This is not the case, however, because stand-
ardization equalizes the range (or the variance) of all
species so that the variables become entirely commensu-
rable. Calculating D based on raw data, as proposed here,
retains the original differences between the variables.

Some selected features of the new coefficients

Two topics associated with the present approach
have particular importance for the practitioner. (1) The
similarity of the new forms to the presence/absence
counterparts and the question whether the properties of
the former can be deducted from those of the latter. (2)
The relationship between the newly described formulae
and existing quantitative coefficients, and the important
requirement that the former ones should yield informa-
tion from the data which cannot be obtained otherwise.
These are investigated in some detail using artificial and
actual vegetation data.

Artificial data

The properties of similarity coefficients have been
revealed efficiently and extensively by graphical evalu-
ation (Lamont & Grant 1979; ordered comparison case
series of Hajdu 1981; Gower & Legendre 1986; Shi
1993; Podani 2000). The procedure involves the use of a
standard object to which all other objects, changed in a
regular way to represent some meaningful trend in the
data, are compared. The sample data set given in Table
1 was selected here as a basis for the comparative
evaluation of indices. In this matrix, nine sample sites
are described in terms of the abundances of 16 variables
(species). The species are assumed to have simple
unimodal response to an hypothetical underlying gradi-
ent, the objects gradually change from site 1 to site 9
such that the optima of the species are shifted at each
step. Table 2 summarizes the values of the contingency
table for both presence/absence and abundance-based
comparisons. Table 3 presents the presence/absence
coefficients used for the artificial example.

Overall, the presence/absence and quantitative forms
of the same coefficient exhibit essentially the same re-
sponse to systematic changes in the data (Fig. 1). The
curves fitted to the points take similar shapes, and the rank
order of values for a given coefficient is identical for its
both versions. The discrepancy between the alternatives
becomes more increased in the direction of 1/1→1/9,
due to the increased importance of cell D in the calcula-
tions (cf. Table 2). Since this cell cannot be zero in this
sample data set, many similarities do not fall to zero,
even though there are no species in common for the pair
1/9 (Fig. 1b, d). When the coefficient’s value entirely
depends on the multiple of A and D (A1q and BB2q) or
D is not used in the numerator (RRq), however, the
minimum of zero is reached.

O B J E C T S
1 2 3 4 5 6 7 8 9

1 1 0 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0

V 3 3 2 1 0 0 0 0 0 0
A 4 4 3 2 1 0 0 0 0 0
R 5 4 4 3 2 1 0 0 0 0
I 6 3 4 4 3 2 1 0 0 0
A 7 2 3 4 4 3 2 1 0 0
B 8 1 2 3 4 4 3 2 1 0
L 9 0 1 2 3 4 4 3 2 1
E 10 0 0 1 2 3 4 4 3 2
S 11 0 0 0 1 2 3 4 4 3

12 0 0 0 0 1 2 3 4 4
13 0 0 0 0 0 1 2 3 4
14 0 0 0 0 0 0 1 2 3
15 0 0 0 0 0 0 0 1 2
16 0 0 0 0 0 0 0 0 1

Table 1. Artificial data for the graphical evaluation of indices.
Note the apparent gradient from site 1 to site 9.

a.
1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

a 8 7 6 5 4 3 2 1 0
b 0 1 2 3 4 5 6 7 8
c 0 1 2 3 4 5 6 7 8
d 8 7 6 5 4 3 2 1 0

b.
1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9

A 20 16 12 9 6 4 3 1 0
B 0 4 8 11 14 16 18 19 20
C 0 4 8 11 14 16 18 19 20
D 32 28 24 21 18 16 14 13 12

Table 2. Cell frequencies of the 2 × 2 contingency table
according to presence/absence (a) and quantitative (b)
approaches for the comparison of site 1 with itself and all the
others in Table 1.
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Field data

Post-fire successional data collected in an Austrian
pine (Pinus nigra) plantation on the south-facing dolo-
mite slopes of the Buda Hills, north-central Hungary
(Tamás & Csontos 1998; Podani et al. 2000) serve as the
first actual example. Percentage species cover scores
were recorded in five repetitions of 2 m × 4 m permanent
plots examined annually for four years after the fire of
1993. A control plot examined in a neighbouring grass-
land stand untouched by the fire was also included as a
reference basis. The sampling survey yielded a 112 × 25
matrix, with species as rows and sample plot/year com-
binations as columns.

Data from a chronosequence representing the regene-
ration succession of sessile oak-turkey oak forest
following clear-cut offer a possibility for further illus-
trations. Percentage cover scores were recorded from
the herb layer using 20 m × 20 m quadrats. Each quadrat
was taken from a different watershed of the same geo-
graphic region (Visegrádi Mts., Hungary) with practi-
cally uniform climate and very similar soil properties.
Stand age varied from 4 to 30 years since clear-cut, and
within this time span three consecutive stages of regen-
eration succession can be identified (Csontos 1996):

A. Early stage of forest regeneration with a mosaic
pattern of grassy patches and groups of young shrub-
like trees. Relative irradiation in the herb layer varies

between 22 % and 59 % (12 quadrats).
B. Intermediate stage with a very dense thicket of

young trees. Relative irradiation in the herb layer is as
low as 2 % (8 quadrats).

C. Final stage. The tree canopy opens up again thus
allowing 12-16 % relative irradiation penetrating to the
herb layer (five quadrats).

This study yielded a 199 species × 25 quadrats data
matrix with species as rows and quadrats as columns.

Both data sets were analysed by the same methodol-
ogy. Resemblance matrices for sites were calculated
using the complements (dissimilarity forms) of four
similarity indices: the Jaccard index (a, in Figs. 2 and 3)
and its quantitative counterpart, the Ružička index (c)
represent formulae utilizing only three cells of the con-
tingency table, whereas the simple matching coefficient
(b) and its newly established quantitative version (d)
were chosen for inspecting the effect of four cells. The
dissimilarity matrices were subjected to metric multidi-
mensional scaling (alias principal coordinates analysis,
Gower 1966) to derive an ordination of plots and years.
The ordinations were performed by the SYN-TAX 5.1
program package (Podani 1993).

Results

Post-fire succession. The ordinations along the first
two axes (Fig. 2a-d) account for 31.4, 46.8, 24.3 and
42% of variance, respectively, showing that variance
extraction is more efficient when the d(D) cell is also
considered in calculating dissimilarity. This higher vari-
ance is expected for coefficients considering d or D (P.
Legendre, pers. comm.). The four scatter diagrams agree
in that the plots representing the unburnt area separate
along the first, and most significant axis from the other
sample plots taken in the burnt stands. There are, how-
ever, differences in the arrangement of burnt sites, al-
lowing alternative interpretations of post-fire succes-
sional changes.

On the basis of presence/absence data (Fig. 2a, b),
the Jaccard index and the simple matching coefficient
produced remarkably similar ordinations. The two
scattergrams apparently suggest similar trends and groups
in the data indicating that there is low beta diversity (i.e.,
short gradient) in the data. This is not so with the cover
data! In the ordination diagram obtained by the ex-
tended version of the simple matching coefficient (SMq,
Fig. 2d), the plots from the first study year are posi-
tioned very close to one another near the origin, as a
manifestation of their small vegetation cover relative to
the subsequent years (0.9% versus the average of 40-
65%). This arrangement reflects well the high overall
similarity of sites from early regeneration stages. The

Abbre- Name Formula
viation

SM Simple matching
a d

a b c d

+
+ + +

coefficient

RT Rogers & Tanimoto
a d

a b c d

+
+ + +2 2

SS1 Sokal & Sneath
2 2

2 2
a d

a b c d

+
+ + +

A1 Anderberg 1
a

a b

a

a c

d

b d

d

c d+
⋅

+
⋅

+
⋅

+






1
2

A2 Anderberg 2
1
4

a

a b

a

a c

d

b d

d

c d+
+

+
+

+
+

+






FA2 Faith 2
a d

a b c d

+
+ + +

0 5.

RR Russell & Rao
a

a b c d+ + +

BB2 Baroni-Urbani & Buser
ad a

ad a b c

+
+ + +

Y1 Yule 1
ad bc

ad bc

−
+

Y2 Yule 2
ad bc

ad bc

−
+

Table 3. Presence/absence coefficients extended to abundance
data in this paper.
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explanation is fairly obvious: the denominator of SMq is
constant over all comparisons and the small individual
differences between first year sample plots are over-
whelmed by the absence of large quantities that appear
in later years in the sample. However, when mutual
absence is disregarded (Ružička index, Fig. 2c), the
small differences among first year quadrats are more
emphasized because the denominator is also small. In
this case, the first year plots clearly separate from the
other burnt sites on axis 2. These are the most essential
differences between the two groups of indices. As men-
tioned above, considering mutual absences implies the
same reference basis for all comparisons of quadrats. If
mutual absences are not included, we disregard quanti-
ties that are absent from the two quadrats being com-
pared, but are potentially manifested in the study region.
Therefore, the two possibilities of expressing ecological
similarity are complementary to each other.

Regeneration succession after clear-cut. As far as
ordination efficiency is concerned (18%, 24%, 18% and
27% for dimensions 1-2 in Fig. 3a-d), the situation is the
same as in the previous example: when d(D) is disre-
garded, the efficiency is lower. The ordinations based
on presence/absence data (Fig. 3a, b) are muc more
similar to each other, as in the previous data set. Again,

it shows the presence of a short background gradient.
The early phase of regeneration (stage A) is separated
from the two older stages (B and C) along the first axis,
while stages B-C overlap to some extent in the ordina-
tion plane. An explanation is that in stage A the high
relative irradiation supports a well-developed species
rich herb layer with several light demanding species. In
the next stage (B), under the shade of the thicket the herb
layer impoverishes, only shade tolerant species and a
few highly tolerant oak wood species can survive. In
stage C, as a result of increased relative irradiation the
herb layer becomes more vigorous. The species that
survived in stage B now attain higher cover and only a
few species appear, hence the pronounced floristic rela-
tionship between stages B and C.

Ordinations based on quantitative data produced a
markedly different arrangement of groups (Fig. 3c, d):
stage B is separated from A and C along the first axis.
This separation is caused by the low total cover of species
in this intermediate successional stage. For the Ružička
index (Fig. 3c), quadrats from stages A and C show a
slight tendency to segregate, whereas the new quantita-
tive form of the simple matching coefficient places them
into practically the same cluster. The closeness of the
starting and closing phases is the manifestation of higher

Fig. 1. Graphical comparison of presence/absence
coefficients (a, c and e) with their quantitative counter-
parts (b, d and f, respectively) based on the artificial
data of Table 1. Object 1 is compared with itself and
with all other objects along an imaginary gradient
(ordered comparison case series). Abbreviations: A1
and A2 = Anderberg indices, BB2 = Baroni-Urbani &
Buser’s second index, FA2 = Faith’s index, RR =
Russell & Rao index, RT = Rogers & Tanimoto’s
index, SM = simple matching coefficient, SS1 =
Sokal & Sneath coefficient, Y1 and Y2 = Yule coeffi-
cients; q refers to the ‘quantitative’ variant of the
index. See Table 3, for formulae of presence/absence
forms.
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cover values (due to elevated relative irradiation) not-
withstanding that stage C is much poorer in species than
stage A. The high similarity between A and C is more
pronounced by the newly established quantitative form
of the simple matching coefficient (Fig. 3d). Note also
that stage B quadrats form a more compact group with

the new index. These sites are all characterized by the
absence of potential abundance of their species, as a
consequence of the very shady thicket stage of the forest
regeneration succession. The new index seems to be a
powerful tool to detect such lack of abundances.

Fig. 2. Principal coordinates analysis
of post-fire succession data over four
consecutive years (numbered 1 to 4)
using five replicate plots from each
year. C refers to the control (unburnt)
area. Presence/absence coefficients are
Jaccard (a) and simple matching coef-
ficient (b), quantitative indices are the
Ružička (c) and the new, quantitative
form of simple matching coefficient
(d).

Fig. 3. Principal coordinates analysis
of chronosequence data with three dis-
tinct successional stages (A: initial
species rich stage, B: intermediate
thicket stage, C: open wood). Pres-
ence/absence coefficients are Jaccard
(a) and simple matching coefficient
(b), quantitative indices are the Ružička
(c) and the new, quantitative form of
simple matching coefficient (d). Con-
vex polygons showing the three stages
are superimposed for clarity.
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Discussion

This paper presents an extension of presence/ab-
sence coefficients to abundance data. The inclusion of a
‘quantitative’ version of the d cell in the coefficients
allows that maximum quantities of species attained by
the sample are considered in the comparisons. As a
result, all pairwise comparisons are referred to the same
universal set, which is otherwise a natural requirement
for presence/absence indices that consider mutual ab-
sences. Earlier, data standardization was practically the
only possibility to place all pairwise comparisons to the
same reference basis. Standardization and the incorpo-
ration of the D cell are, however, logically very different
operations and therefore serve different purposes in data
analysis.

There is considerable agreement among ecologists
that the absence of a species from both sites being
compared may be an indication of different background
phenomena, contrary to mutual presence (Orlóci 1978;
Green 1979; Legendre & Legendre 1998, to name only
a few). This is especially true in communities with high
beta-diversity. In case of long ecological gradients, for
example, the measurement of ecological resemblance
may be excessively biased if double absences are con-
sidered so that the asymmetric indices are favoured.
Mutual absences do have ecological meaning, however,
in sites where species absence is explained by factors
other than environmental heterogeneity. Post-fire re-
generation of vegetation is such a case, as we have
demonstrated.

The new extensions imply more than a simple en-
largement of the available arsenal of resemblance coef-
ficients. A methodological importance of introducing
the extended forms is that comparisons of analyses
based on different data types can be brought to the same
logical basis. If one wishes to evaluate a change from
presence/absence to cover or abundance data, all as-
pects of the analysis (resemblance coefficient, method
of ordination or classification) can be kept constant, so
that differences among results are due only to data type
changes. This allows exclusion of confounding effects,
which may mask the trends that we are examining.

The examples demonstrated that the importance of
the new extensions is not only theoretical. The quantita-
tive forms reveal information that would remain
undetectable by standard resemblance coefficients. When
the underlying ecological gradient is short, as in the
examples, the presence/absence alternatives yield very
similar results, which is not the case with the quantita-
tive forms. Such situations are expected to appear in any
study concerned with temporal vegetation change over a
study area with relatively narrow ecological variation.
Under such circumstances, potential abundance, i.e., the

maximum amount reached in the study area, does have
ecological meaning to be considered in quantitative
studies. It is noted that potential abundance is in effect
even though no zeros appear in the data, that is, the
expanded forms imply more than a simple extension of
double absence for the quantitative case.

We acknowledge that the development or improve-
ment of resemblance functions has been out of focus of
contemporary vegetation science. Some could say that
the number of coefficients is large enough, making the
investigator’s choice unnecessarily difficult. It happens
very often in science that, whenever a large amount of
knowledge has accumulated after an extensive research
period and the overview of all results requires increased
efforts, the attention of many researchers is diverted
towards new, freshly emerged and more fashionable
research topics. We agree with the late P. Juhász-Nagy
(pers. comm.) that this is an undesirable situation, and
feel that there are no research fields exhaustively ex-
ploited. As confirmed by the present study, this is the
case with resemblance coefficients: the actual examples
demonstrated that the use of logical counterparts of
indices highlights new aspects inherent in vegetation
data.
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