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Abstract 

Sixteen clustering methods are compatible with the general recurrence equation of combinatorial SAHN 
(sequential, agglomerative, hierarchical and nonoverlapping) classificatory strategies. These are sub- 
divided into two classes: the d-SAHN methods seek for minimal between-cluster distances the h-SAHN 
strategies for maximal within-cluster homogeneity. The parameters and some basic features of all 
combinatorial methods are listed to allow comparisons between these two families of clustering proce- 
dures. Interest is centred on the h-SAHN techniques; the derivation of updating parameters is presented 
and the monotonicity properties are examined. Three new strategies are described, a weighted and an 
unweighted variant of the minimization of the increase of average distance within clusters and a 
homogeneity-optimizing flexible method. The performance of d- and h-SAHN techniques is compared 
using field data from the rock grassland communities of the Sashegy Nature Reserve, Budapest, Hungary. 

Abbreviations: CP = Closest pair; RNN = Reciprocal nearest neighbor; SAHN = Sequential, agglomera- 
tive, hierarchical and nonoverlapping 

Nomenclature of syntaxa follows So6, R. 1964. Synopsis systematico-geobotanica florae vegetationisque 
Hungariae I. Akadrmiai, Budapest. 

Introduction 

The sequential, agglomerative, hierarchical and 
nonoverlapping clustering techniques (the so- 
called SAHN methods, Sneath& Sokal 1973) are 
commonly used procedures of numerical classifi- 
cation in vegetation science (see Orl6ci 1978; van 
der Maarel 1979; and Greig-Smith 1983, for 
review), including synsystematics (e.g., Orl6ci & 
Stanek 1979; Mucina 1982; Moreno-Casasola & 

Espejel 1986). A family of these methods requires 
only a symmetric distance (dissimilarity, simi- 
larity, etc.) matrix W to be stored in computer 
memory during computations; the raw data may 
be released once this matrix has been calculated 
(stored matrix approach, Anderberg 1973). The 
original data are not needed because there is a 
combinatorial solution to recompute between- 
cluster measures using the information contained 
in W and in an array of cluster sizes. Lance & 
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Williams (1966, 1967) presented the classical 
example for this approach; they suggested the 
recurrence formula 

Wh, ~ = aeWhe + ~jWhj + flW e + 

+ 71 Whi - Whjl (1) 

to update the values of W for the single linkage, 
complete linkage, group average, centroid and 
median (Gower 1967) clustering algorithms 
(Table 1). If clusters C i and Cj are merged in a 
clustering cycle, then Wh, ij gives the updated cri- 
terion value to be used in the next cycle for cluster 
C; w Cj with any other cluster C h. T h e  simple 
average (or weighted average linkage, WPGMA) 
method originally suggested by Sokal & Michener 
(1958) is also combinatorial. Wishart (1969) 
developed first the parameters for the incremental 
sum of squares agglomeration technique. The 
fl-flexible strategy of Lance & Williams (1967) has 
no fixed parameters, the values of~,  ~j, and flmay 
be changed under certain conditions to provide 
transitions between extremely space-dilating and 
space-contracting algorithms (see also Sneath& 
Sokal 1973). Less constrained is the (fl, 7)-flexible 
technique introduced by DuBien & Warde (1979) 
which in fact contains the single linkage, complete 
linkage, simple average and fl-flexible strategies as 
special cases. Diday et  al. (1982) presented the 
parameters for the minimization of the increase of 
variance, so that the number of methods formally 
compatible with equation (1) increased to ten. 

In the meantime, it was revealed that further 
SAHN methods have combinatorial solutions. 
Jambu (1978) and Podani (1978, 1979) inde- 
pendently derived updating parameters for two 
techniques which had formerly been described by 
Anderberg (1973) as representatives of the s tored  

data  approach. These methods minimize the error 
sum of squares or the variance of the newly formed 
clusters. Podani (1978, 1979) also showed that 
the method of average linkage within the new 
group (Anderberg 1973, p. 139), in which cluster 
homogeneity is defined as the average of within- 
cluster similarities, is also combinatorial. These 
three methods differ from those compatible with 
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equation (1) in that within-cluster measures are 
also used in recalculating between-cluster meas- 
ures. The updated value, wh.,j, is determined 
according to six values of W: 

Whh Whi Whj 

W~,W o. 

W~,. 

where Whh , Wii and wjj (replaced by wh, w;, and wj, 
for simplicity) denote either sum of squares, 
variance or average similarity within clusters Ch, 
C~, and Cj, respectively. Jambu (1978, see also 
Jambu & Lebeaux 1983) suggested that the scope 
of the Lance-Williams formula be extended to 
these methods by adding three terms to equation 
(1) so that a more general recurrence relation is 
obtained: 

+ &Wh + + , jWj (2) 

(see Table 1 for parameters of the above three 
methods). 

This paper shows that three more SAHN tech- 
niques fit into equation (2): the minimization of 
the increase of weighted and unweighted average 
distance within clusters, and a new flexible 
strategy. A classification of the 16 known com- 
binatorial techniques is suggested considering 
whether inter-cluster distances or within-cluster 
homogeneities are optimized during the clustering 
process. Those concerned with cluster homo- 
geneity are discussed and the derivation of their 
updating parameters is presented. Two tables 
summarize basic information on the combina- 
torial SAHN methods compatible with the gen- 
eral recurrence formula given by equation (2). 23 
different algorithms of these methods are applied 
to a phytosociological data set from grassland 
communities, and the resulting dendrograms are 
assessed by a multiple comparison method. 

Combinatorial h-SAHN methods 

Distance- versus homogeneity-optimizing strategies 

The SAHN procedures have been the subject of 
intensive research for many years, but an interest- 
ing aspect recognized by Lance & Williams (1967) 
remains largely overlooked. Those authors dis- 
tinguished among three basic types of measures 
used in cluster analysis; these types will serve as 
the starting point in this paper for a more com- 
prehensive categorization of combinatorial 
SAHN methods. 

For a number of SAHN techniques inter- 
cluster distances (or dissimilarities, similarities, 
etc.) are defmed (the (i,j)-measures in Lance & 
Williams' terminology). Distances are geometri- 
cally interpretable in a Euclidean space and com- 
patible with all methods to be discussed; therefore 
they will be used in the sequel unless otherwise 
stated. Two clusters, C,. and Cj, are fused if their 
distance, d(Ci, Cj), is minimal in the given cluster- 
ing step. One entry in W is defined in two ways 
to ensure compatibility with equation (1): 

wo = a ( C ,  c j )  or = d2 (C ,  c j ) .  

There are no restrictions on within-cluster homo- 
geneity; and the fusion levels indicated in the 
dendrogram are between-cluster distances 
containing no information on within-cluster 
structure. Typical examples are the group average, 
centroid and single linkage methods. 

In other SAHN procedures the fusion criterion 
relies on some measure of within-cluster homo- 
geneity, even if inter-object distances are calcu- 
lated first in the analysis. Using an appropriate 
homogeneity measure, h(Ct), the analysis may 
proceed in two different ways. One possibility is 
to maximize the homogeneity of the newly formed 
clusters, that is, 

w~ = h(C,~  Cj). 

This criterion corresponds with the (/)-measures 
of Lance & Williams (1967) although they con- 
sidered such measures to have relevance in 
nonhierarchical clustering only. An example is the 



minimization of sum of squares in new clusters, a 
method already mentioned in connection with the 
general recurrence formula (2). The other optimi- 
zation procedure involves minimization of the 
change of homogeneity upon the fusion of two 
clusters, so that one entry of W will have the 
following general form, 

w U = h(q  G) - p , h ( C i )  - pjh(G).  

where Pi and Ps are weights specific to each proce- 
dure. Such criteria were called the (/j, k)-measures 
by Lance and Williams, with k referring to the 
union of Ci and Cj. The incremental sum of 
squares technique which amalgamates clusters so 
as to minimize the increase of within-cluster sum 
of squares is an example. The increments w u are 
not used directly as fusion levels in the dendro- 
gram; a more appropriate level is h(C i w Cj) so 
that the results of the alternative homogeneity- 
optimizing strategies become directly compara- 
ble. 

I think that the distinction between the dis- 
tance- and homogeneity-optimizing SAHN strat- 
egies is important and facilitates the discussion of 
combinatorial methods. I suggest the use of 
abbreviations d-SAHN and h-SAHN, respec- 
tively, to cover these two main groups of proce- 
dures. Within the second category, further dis- 
tinction is made between the nh-SAHN and 
ch-SAHN techniques depending on whether the 
homogeneity of new clusters or the change of 
homogeneity is minimized. It is noted that the use 
of this terminology is not restricted to combina- 
torial methods; there are d-SAHN methods (e.g., 
the U-statistic clustering method proposed by 
d'Andrade 1978) and h-SAHN methods (e.g., 
those utilizing information theoretic criteria to 
measure cluster homogeneity, Lance & Williams 
1967, Sneath& Sokal 1973) which do not satisfy 
the recurrence relation (2). 

The close relationship among the h-SAHN 
combinatorial methods is that the derivation of 
updating parameters for equation (2) follows the 
same logic (see Appendix). This further supports 
the importance of an at least technical distinction 
between d-SAHN and h-SAHN combinatorial 
procedures. 
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Fusion criteria in combinatorial h-SAHN methods 

Four definitions of within-cluster homogeneity 
have been proposed in association with com- 
binatorial SAHN methods. These are the error 
sum of squares (SSQ), variance (VAR), and 
average distance (DIS) or similarity (SIM) within 
clusters. The latter measure is especially impor- 
tant in various approaches to phytosociological 
classification (e.g., Popma et al. 1983). The clus- 
tering process may proceed in two basically dif- 
ferent ways: 1) maximization of the homogeneity 
of new clusters, and 2)minimization of the 
decrease of homogeneity. The combination of 
homogeneity measures and strategy types gives 
rise to 6 h-SAHN methods, one of them with 
weighted and unweighted variants. These include 
both widely used and less known methods of 
numerical classification, as well as two proce- 
dures for which the updating parameters are 
presented for the first time in this paper. This 
section gives a summary of fusion criteria; the 
derivation of parameters is presented in the 
Appendix. The parameters are shown in Table 1 
while other useful information is summarized in 
Table 2 which allows for comparing the basic 
features o fd -SAHN and h-SAHN combinatorial 
procedures. A practical importance of the sub- 
sequent discussion is that several publications do 
not specify exactly the fusion criterion actually 
used; reference to terms such as minimum 
variance clustering and Ward's method is a poten- 
tial source of confusion. 

Optimization of new within-cluster heterogeneity 

Minimization of error sum of squares (dispersion) 
within the new cluster (MNSSQ) 
Cluster homogeneity is expressed in terms of error 
sum of squares calculated from pairwise dis- 
tances, do., of objects. One element of the starting 
matrix is d~/2. At each stage of the analysis any 
C~ and Cs are fused provided that 

wrs= min{SSQ(Ciw Cj): l<_<_i<j<=n}, 

(Anderberg 1973: p. 148). 
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Table 2. Some properties of combinatorial SAHN clustering methods. 

Clustering Initialization Fusion level of Ci ~ Cj 
method of W * (and update of wi) 

ai + ~j + fl + Monotone 
+ ).h + 2; + 2j fusion 

levels 

CP RNN 

Results of 
CP andRNN 
agree 

1. SL d o w o 

2. CL d o w o 

3. UPGMA d,7 w o 

4. WPGMA d o w o 

5. UPGMC dE 

6. WPGMC d 2 

7. fl-FLEX d o w o 

8. (fl, y)-FLEX d o w o 

1 yes yes yes 

1 yes yes yes 

1 yes yes yes 

1 yes yes yes 

<1 no no no 

.75 no no no 

1 yes yes yes 

1 yes/no yes/no yes/no 

9. MISSQ d2/2 w o. + w i + wj 

10. MNSSQ d~/2 wu* 

n i nj 
11. MIVAR d2./4 w o + wi + wj 

n i + n: n i + nj 

12. MNVAR d2/4 wo., 

1 1 
13. WMIDIS d o w U + ~wi + ~ w : ,  

bl 
14. UMIDIS d U wo + wi + bj wj* 

b i + b j  ~ " 

15. MNDIS d o wo* 

16. 2-FLEX d o wo* 

1 yes yes yes 

1 yes yes yes 

< 1 < no no no 

1 yes yes yes 

< 1 -< no no no 

-< 1 -< yes? no no 

1 yes no no 

1 yes no no 

M i n i m i z a t i o n  o f  v a r i a n c e  w i th in  t he  n e w  c l u s t e r  

( M N V A R )  

C l u s t e r  h o m o g e n e i t y  is m e a s u r e d  b y  the  a v e r a g e  

c o n t r i b u t i o n  o f  o b j e c t s  to  t h e  t o t a l  s u m  o f  s q u a r e s  

o f  the  c lu s t e r  (i.e.,  v a r i a n c e ) .  O n e  e l e m e n t  o f  t he  

s t a r t i n g  m a t r i x  is w,7 = d 3 / 4 .  T h e  c o n d i t i o n  for  the  

f u s i o n  o f  t w o  c lu s t e r s  Cr a n d  Cs is t h a t  the  

v a r i a n c e  o f  t he  n e w  c lu s t e r  b e  m i n i m a l :  

w ~  = m i n  { V A R ( C i  u Cj) :  1 < i < j < n }  

(cf. A n d e r b e r g  1973:  p. 148). 



Optimization of average distance or (dis)similarity 
within the new cluster (MNDIS). 
Originally, I suggested that cluster homogeneity 
be measured by the simple matching coefficient 
generalized to more than 2 objects (Podani 1978, 
1979). In this case, homogeneity was defined as 
the number of agreements among objects divided 
by the possible number of agreements. This ratio 
is simply the average of all pairwise similarity 
coefficients within the cluster. However, the 
strategy equally applies to other types of similarity 
measures, as well as to dissimilarity and distance 
coefficients. If cluster homogeneity is defined as 
the average ofpairwise similarities (SIM),  then C~ 
and Cs are selected for fusion if 

Wrs = max{S IM(Cew Q): 1 < i < j <  n}.  

For dissimilarities and distance, the criterion is 

Wr, = min {DIS(C~ w Cj): 1 ~ i < j  < n}. 

This method, termed as average linkage within the 
new group, was considered formerly by Ander- 
berg (1973: p. 139) as a representative of the 
stored matrix approach: only the distances have 
to be retained in computer memory during calcu- 
lations even if the combinatorial algorithm is not 
used. However, the combinatorial procedure is 
much faster than the algorithm suggested by 
Anderberg. 

Minimization of the increase of heterogeneity 

Minimization of the increase of sum of squares 
(MISSQ)  
This technique has been referred to under various 
and often misleading names (e.g., Ward's method, 
minimum variance (!) clustering, sum of squares 
agglomeration, and a better one: incremental sum 
of squares clustering) and belongs to the most 
widely used clustering algorithms. As clusters to 
be fused any C~ and Cs are chosen so that 

Wrs = min {SSQ(Ce w Cj) - SSQ(C,.) - SSQ(Cj):  

1 < i < j < n }  
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(see e.g., Anderberg 1973; Orl6ci 1967; Wishart 
1969). 

Minimization of  the increase of variance (MIVAR ) 
In this strategy clusters Cr and C, are fused pro- 
vided that 

wr, = min { VAR(C~ w Cj) - 

n i VAR(Ci ) nj 
n i + nj n~ + nj 

l <=i<j<=n}, 

- - -  v A R ( C j ) :  

(Diday etal. 1982). Jambu & Lebeaux (1983) 
stated that the parameters for this method agree 
with those of MISSQ, but this is not the case. 
Diday et al. (1982, p. 89) listed first the correct 
parameters for this technique without showing the 
derivation of parameters which is presented in the 
Appendix. 

Minimization of the increase of average within- 
cluster distances (MIDIS) 
This is a new strategy with two alternative 
variants. The average within-cluster distances for 
clusters Ch and C~ w Cj may be calculated in two 
different ways, i.e., with and without considering 
cluster sizes. Accepting the terminology of Sneath 
& Sokal (1973), these variants are termed as 
unweighted and weighted MIDIS, respectively, 
because when cluster sizes are neglected the 
smaller cluster receives greater weight. In this 
sense, these alternatives are analogous to the pair 
of group average and weighted average (UPGMA 
and WPGMA) methods as well as to the pair of 
the median and centroid strategies from the group 
of d-SAHN methods. 

In the weighted case (WMIDIS), clusters Cr 
and C, are amalgamated provided that 

Wrs = min {DIS(Cj w Cj) - 

1 1 
DIS(C,) - = DIS(Cj): 

2 2 

1 < i < j < n } .  
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The condition for the fusion of G and Cs in the 
unweighted strategy (UMIDIS)  is as follows: 

wr, = min {DIS(C~ u Cj) - 

bi 
- - - D I S ( C ; )  

bi+ bj 

l < i < j < n } ,  

with b ; = ( 2  0 .  For similarities, 

replace min in both formulae. 

bj DIS(Cj ) :  
bi+ bj 

m a x  should 

Uitrametric properties of  combinatorial S A H N  
methods 

A hierarchy produced by a clustering algorithm 
may be described in terms of a matrix D in which 
b U is the lowest hierarchical level at which objects 
i andj  belong to the same cluster. If any triplet bo., 
b m, and baj of such values satisfies the relations 

6o. < m a x  { aa,, ~3aj } , 

a m < m a x ( g ,  6h, } , and 

baj < m a x  { 6¢, 6a; } , 

the output values are ultrametric distances (cf. 
Johnson 1967). In this case the fusion levels 
monotonically increase: the fusion level of any 
cluster C a and (7,. w Cj cannot be lower than that 
of cluster C; with Cj. Failure to satisfy the above 
relationships is manifested as "reversals" in the 
tree diagram. The methods compatible with for- 
mula (1) will produce monotone increasing fusion 
levels provided that 

~; + ~j +/3 > 1, (3a) 

c¢; + ~j > O, (3b) 

? > - min { e;, ~j } , (3c) 

(see MiUigan 1979; Batagelj 1981). Therefore, 5 
d-SAHN strategies are monotonic, the exceptions 
being UPGMC, WPGMC and, depending on the 
choice of parameters, the (fl, y)-flexible method 
(Table 2). 

The h-SAHN methods require separate and 
more thoroughful scrutiny for monotonicity. 
First, the nh-SAHN methods are considered. 
Diday (1983) suggested four necessary and suf- 
ficient conditions to ensure monotonicity of 
methods compatible with equation (2). These 
conditions include 3a-c and 

41, 42, 43 ~ 0. (3d) 

From Table 2 it is easily seen that neither 
nh-SAHN methods discussed meet the require- 
ment expressed by condition (3d). One should 
observe, however, that 
~; + c~j + fl + 2a + 2; + 4j. = 1 for MNSSQ, 
MNVAR and MNDIS,  therefore it is worth 
examining if the constraints 

c~; + ej + fl + 4h + 2; + 4 j >  1,  (4a) 

4a, 4;, 4j N 0,  (4b) 

a i , o  9 , f l > O ,  and (4c) 

? = 0 (4d) 

are sufficient to prove the ultrarnetric feature of 
these methods. The hierarchical levels monotoni- 
cally increase if it can be shown that Wh. 0 > WO for 
every clustering step. The proof below utilizes 
some elements of Milligan's (1979) proof applied 
to d-SAHN procedures. 

Proof  The assumed constraint (4a) may be 
rewritten as fl > 1 - at - ~j - 4h -- 2 ; -  4j. Sub- 
stituting this constraint into (2) yields 

wh, u >  C~,Wh, + CgWa j + 

+ (1 - ~i - ~j - 4h - 4i - 4j)wo + 

+ 4hWh + 4,W, + ,tjWj. 

After rearrangement we have 

Wh.o" > W U + ~,(Wh;- W o) + ~j(Whj- WO') + 

+ &(Wh -- WO') + 4,(W, -- W U) + 

+ 4j(wj - w,j). (5) 



Since in the first clustering step wh, we, wj = 0, it 
must be that wo., Whi, Whj > W e, Wj, W h. The clus- 
tering procedure always selects the smallest value 
in W, so that w o < Whj, Whe. Since the constraints 
(4b-c) require that the 2-s are non-positive and 
that ct e, ej cannot be negative, the last five terms 
in (5) must be greater than or equal to zero and 
may be deleted from the inequality without losing 
its validity, and we end up with the desired 
inequality: 

wh,,j > w•. (6) 

After the fusion, we is set equal to w o. and row and 
column j of W are masked. It is apparent that w e 
will not be greater than any off-diagonal value of 
W. According to (6), the off-diagonal values of W 
cannot decrease in the subsequent steps, therefore 
the newly computed fusion levels are never lower 
than the earlier values. Thus, the monotonicity of 
levels holds, no matter whether S S Q ,  V A R  or D I S  

are used as the homogeneity measure• 
In the proof above it was assumed that the 

classical paradigmatic SAHN clustering algo- 
rithm is employed, i.e., a single fusion is per- 
formed in every clustering step (closestpair or CP 
algorithm)• When reciprocal nearest neighbors 
are fused in each cycle to accelerate the analysis 
(reciprocal nearest neighbor or RNN algorithm, 
see e.g., Anderberg 1973; Murtagh 1983; Day & 
Edelsbrunner 1984), the constraints (4a-d)  are 
insufficient to ensure monotonicity and the nature 
of the homogeneity measure will be of primary 
concern. It is enough to examine whether the 
reducibility condition• 

Wh, O" > rain { Wh,, Whj } for all h 

(Bruynooghe 1978), holds for all reciprocal 
nearest neighbors i and j. Since this condition is 
satisfied for MNS SQ and MNVAR, their results 
(and thus their ultrametric properties) are un- 
affected by the choice between the CP and RNN 
algorithm. However, for the MNDIS criterion the 
reducibility condition is not satisfied as the fol- 
lowing simple example demonstrates. Let the 
matrix of Euclidean distances of four objects be 
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given by 

0 1 2 + e  2 + e  

W = 
0 2 + e  2 + e  

0 2 

Object pairs 1-2 and 3-4 are reciprocal nearest 
neighbors if 0 < e, but Wl. 34, 
w2, 34 = (6 d- 2e)/3 < 2 + e. As a consequence, 
the RNN algorithm does not exclude the possi- 
bility of reversals. Thus, whereas the ultrametric 
properties of d-SAHN methods remain the same 
for the CP and RNN algorithms (Gordon 1987; 
see Table 2), there is at least one counter-example 
among the h-SAHN strategies. 

The ch-SAHN methods are less similar to one 
another in general properties than the nh-SAHN 
strategies. There are differences in the way of 
calculating the fusion levels and the sum of 
parameters is not a constant, except in MISSQ 
(Table 2). The increment ofMIS SQ is monotonic, 
because the parameters satisfy relation (3). Also, 
itis easy to s e e t h a t S S Q ( C e w  Cj)  = w u + w e + wj 

cannot be lower than w,. or wj (i.e., the sums of 
squares are additive)• The hierarchy produced by 
MISSQ is monotonic regardless whether the 
increments or the new sums of squares are indi- 
cated as fusion levels• This is not so with MIVAR, 
because from the inequality 

+ n 2 > 1 

it should follow that 

n ] > nhn i + nhn j + 2nin  j 

which does not always hold, so the increments are 
not monotonic. The result of MIVAR is very 
strongly influenced by the algorithm employed. 
For example, the RNN algorithm produces a tree 
which might suggest the existence of some clusters 
even in random data, while the dendrogram of the 
CP algorithm exhibits extensive chaining (Fig. 1). 



70 

----t 

I 

2..._ 

_E 

I 

b 
I 

i [ 

I 
I 

7 

Fig. 1. Comparison ofdendrograms produced by alternative 
algorithms of the MIVAR clustering strategy from a random 
data set. a) CP algorithm, b) RNN algorithm. 

Although in this example only the CP algorithm 
produced reversals, in other analyses (not shown) 
both algorithms of MIVAR failed to satisfy 
monotonicity. This is in apparent contradiction 
with Diday's (1983) view that the reducibility con- 
dition holds for MIVAR and its results are always 
monotonic (see the table in his Appendix 2). 

Analyses of random data (not illustrated) 
revealed that neither algorithm of WMIDIS  has 
the property of producing reversal-free dendro- 
grams. Also, the RNN algorithm of UMIDIS  is 
also fiable to failure of monotonicity. Whether the 
CP version of UMIDIS  may also yield reversals, 
or it is always monotonic, is not known, however. 

I was unable to construct artificial or random data 
which led to reversals for this strategy; in the 
worst case complete chaining of objects with very 
small but monotonic increases of levels resulted. 
A proof is needed to substantiate the statement 
that UMIDIS-CP  is always monotonic. 

A flexible h-SAHN clustering strategy 

Starting from the conditions (4a-d), which 
guarantee a monotonic fusion strategy, a new 
flexible method is defined by imposing the follow- 
ing constraints upon equation (2): 

0 ~ ; + ~ j + f l + 7 + 2  h + 2 e + 2 j =  1, 

~, = ~j = #, and 

7 = 0 .  

The change of parameters under these conditions 
provides an infinite number of results for the same 
set of objects. For 2 = 0 (so that ~ = fl = 1/3), the 
firstly formed clusters will tend to attract single 

A=O A =-0.08 =-0116 

A=-OI3 A=-0.6 A=-I 

z- x__Z Z_ 
Fig. 2. The effect of 2 on the results of a 2-flexible strategy 
(the CP algorithm is employed). 



objects because cluster-to-object measures will 
generally be lower than object-to-object measures. 
The strategy seems to be space-contracting and 
the hierarchy has some degree of chaining so 
characteristic of single linkage dendrograms. 
Note that complete chaining observed for high 
values offl in fl-flexible sorting (Lance & Williams 
1967) does not occur for this maximum value of 
2. As 2 becomes large negative, the objects are 
more intensely grouped and the differences 
between the first and last fusion levels greatly 
increase. This is because cluster-to-cluster 
measures become usually much larger than object- 
to-object measures. This is demonstrated in Fig. 2 
by a series of dendrograms obtained at 6 values 
of ). for a small data set (15 plots taken randomly 
from the whole set described below). 

Application of combinatorial clustering methods 
to phytosociology 

Data 

80 sample plots, each of 4 x 4 m 2 size, were taken 
in the rock grassland communities of the Sashegy 
Nature Reserve, within the city limits of Budapest, 
Hungary, in 1976. The percentage cover of 
species was estimated in each plot, but in this 
paper only presence/absence scores will be used 
for classifications. The total number of species is 
123. The 80 by 123 phytosociological table is not 
presented here; a copy is available from the 
author upon request. 

Previous classifications 

The grassland communities on the dolomite sub- 
strate of the study area have long been the subject 
of intensive phytosociological research. Based on 
the methods of the Zarich-Montpellier school, 
Z61yomi (1958) reported 4 community types 
(associations) from the area. These are: 
1)Festucetum pallentis hungaricum mostly in 
southern exposition on rocks and steep slopes; 
2) Caricetum humilis balatonicum and 3)Festuco 
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pallenti-Brometum pratensis, both on hilltops and 
gentle slopes with some accumulated rendzina, 
and finally 4) Seslerietum sadlerianae on the north- 
eastern slopes with relatively cool microclimate. 
The objective of my surveys in the reserve was to 
examine whether this classification can be con- 
firmed by cluster analysis and multidimensional 
scaling methods. Published results (Podani 1985, 
1986, 1988a) seem to suggest that in the presence/ 
absence situation there are 3 vegetational noda in 
the study area along a combined gradient of 
species richness and plant cover. The first nodum 
roughly corresponds to the open Festucetum pal- 
lentis hungaricum, but the distinction of the other 
types is less clear in the binary case. 

In this paper the classification study mentioned 
above will be extended by applying all com- 
binatorial methods to the Sashegy data. 
Euclidean distances between the 80 plots are used 
because this measure is compatible with every 
algorithm discussed here. d-SAHN clustering 
(SL, CL, UPGMA, WPGMA, UPGMC-CP, 
WPGMC-CP, and fl-FLEX with/~ = - .25) was 
performed by program NCLAS2. h-SAHN clus- 
tering (MISSQ, MNSSQ, MIVAR-RNN and 
-CP, MNVAR, WMIDIS-RNN and -CP, 
UMIDIS-RNN and -CP, MNDIS-CP and 
2-FLEX with 2 = 0, - .08,  - .16,  - .30,  - .60,  
and - 1) was carried out by program HMCL2. 
The resulting dendrograms were compared in 
every pair based on three dendrogram descriptors 
(cluster membership divergence, subtree member- 
ship divergence, and cladistic difference, Podani 
& Dickinson 1984). Cophenetic difference and 
partition membership divergence were excluded 
from the comparison because of the presence of 
reversals in some dendrograms and the lack of 
commensurability in hierarchical levels. The dis- 
tance matrix of dendrograms as prepared by 
program DENDAT was subjected to princi- 
pal coordinates analysis (PCoA, program 
PRINCOOR) and complete linkage clustering 
(CL, program NCLAS2) to reveal structural rela- 
tionships among dendrograms. All the programs 
used here are included in the SYN-TAX III 
package (Podani 1988b). The computations were 
performed on an IBM370 mainframe computer 
and an IBM AT compatible machine. 
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Clustering results 

The 23 dendrograms (not shown) represent a wide 
range of classifications of the 80 sample plots. 
One extreme is the complete chaining of objects 
(MIVAR-CP, UMIDIS-CP, and WMIDIS-CP) 
without any groups indicated. This reflects an 
undesirable property of the CP algorithm of these 
strategies: the firstly formed cluster will tend to be 
fused with individual objects one by one in the 
subsequent clustering steps. Therefore, these ex- 
tremely space-contracting strategies are not 
recommended for use in phytosociological clas- 
sification and their results will be excluded from 
further comparisons in this paper. Other dendro- 
grams (SL and WMIDIS-RNN) also exhibit a 
relatively high degree of chaining with the pres- 
ence of nuclei for some interpretable clusters. 
UPGMC, WPGMC and 2-FLEX (with), = 0) 
also produced chains, but a large cluster contain- 
ing relevrs from the species rich section of the 
study area is quite distinct in the hierarchy. The 
sample plots are subdivided into two large clus- 
ters by MIVAR-RNN, UMIDIS-RNN and 

2-FLEX (l  = -.08); the first cluster interpreta- 
ble as one of the three noda (either the richest or 
the poorest in species) and the other containing 
the remaining plots. 3 clusters, clearly identifiable 
as noda representing 3 levels of species richness 
(low, intermediate, and high) and total cover 
(open, transitional, and closed grassland), are 
depicted by MNVAR, MISSQ and fl-FLEX 
(fl = - .25). The 3 groups may be easily delineated 
in the map of the study area (see Podani 1985, 
1986, 1988a) suggesting good phytosociological 
interpretability. The dendrograms obtained by 
),-FLEX (2= -.16, - .3 ,  - .6 ,  and -1) ,  
MNDIS, CL and MNSSQ imply a more refined 
group structure (four or five clusters) that can be 
derived by breaking the 3-cluster MISSQ or 
MNVAR classifications. Finally, the UPGMA 
and WPGMA dendrograms suggest the existence 
of even more small clusters. 

Comparison of dendrograms 
The quick evaluation of results revealed high 
similarities as well as considerable differences 
among the alternative classifications. However, a 

Axis 3 UPGMC-CP WPG'MC-CP 
• •0 • SL 

k-FLEX(0) %-FLEX(-. 60) 

• 

• %-FLEX(-1.0) 
(-.3o) 

MIVAR-RNN 

0.0 
• k-FLEX(-. 08) 

-1.0 ~ 
• )t-FLEX(-. 16) 

UMIDIS-°RNN 

WMIDIS-RNN 
Axis 2 

-2.0 
-2.0 -I'.0 0'.0 l:O 2'.0 3.0 

Fig. 3. Principal co-ordinates ordination of 20 dendrograms representing classifications of 80 sample plots from the rock 

grasslands of Sashegy Nature Reserve (see text for symbols). 



more thoroughful analysis of the performance of 
methods calls for objective assessment. The com- 
parison of partitions of relev6s at a nearly con- 
stant number of clusters, as done by Gauch & 
Whittaker (1981) would be less useful in the 
present study because of the excessive differences 
in the topological structure of dendrograms. 
Instead, the multiple comparison strategy of 
Podani & Dickinson (1984) was adopted as it 
avoids problems of defining clusters in the 
hierarchy. 

The PCoA ordination of dendrograms reveals 
that the most important underlying factor implies 
a tendency towards chaining. On the first com- 
ponent (15.5~o) WMIDIS-RNN and SL have 
large positive scores (4.9 and 2.0, respectively). 
The other dendrograms are positioned around the 
centroid (scores ranging from - 1.0 to 0.7); there- 
fore the first axis is not illustrated. The relation- 
ships among dendrograms are best explained by 

50 

t.) 

t~ 
4-1 

.~1 

0 

, 
,. ,. 

,~ ~ N N N N N N  

Fig. 4. Classification of 20 dendrograms of the Sashegy 
relev6s by complete linkage clustering (see text for symbols). 
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the next two axes (12.3 ~o and 7.7 ~o, respectively) 
shown in Fig. 3. SL, UPGMC, WPGMC and 
2-FLEX (2 = 0) form a group of dendrograms 
already recognized by subjective scrutiny, but 
they considerably differ from WMIDIS (see also 
Fig. 4). Note the effect of changing the value of 2 
in 2-FLEX: for small negative values the dendro- 
grams are close to the majority of results. How- 
ever, further decrease of 2 leads to a rather dif- 
ferent classification. The phytosociologically 
most interpetable results form a cluster, from CL 
to MNDIS,  in the dendrogram of Fig. 4. 

Concluding remarks 

The combinational SAHN clustering methods 
may be logically divided into two classes. The 
d-SAHN methods seek for minimal between- 
cluster distances and the h-SAHN techniques for 
maximal within-cluster homogeneity. The d- 
SAHN clustering methods are compatible with 
the well-known recurrence formula of Lance & 
Williams (1966) and make use of parameters ct, fl 
and 7. Podani (1978, 1979) used a separate for- 
mula for the h-SAHN methods using parameters 
~, fl and 2, whereas Jambu (1978) suggested that 
all combinatorial methods should be included in 
the same general equation. The latter suggestion 
is elegant but a little unfortunate in the sense that 
the 2-s have no meaning for the d-SAHN methods 
and the 7 parameter is never used by the h-SAHN 
strategies. 

One aim of the present paper is to provide a 
comprehensive list of combinatorial clustering 
procedures, with relatively more emphasis placed 
on the h-SAHN methods. Within-cluster sum of 
squares, variance and average distance are used 
as measures of cluster homogeneity. The optimi- 
zation of homogeneity may be achieved in two 
basically different ways: the fusion criterion is 
either the maximization of homogeneity of the 
new cluster created in a clustering step, or the 
minimization of the decrease of homogeneity. The 
combinations of homogeneity measure and fusion 
criterion define 6 clustering methods, one of them 
with weighted and unweighted alternatives. 5 of 
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these clustering methods have been suggested 
earlier, only UMIDIS and WMIDIS appear to be 
new. 

Based on the monotonicity constraints of 
MNSSQ, MNVAR and MNDIS, a new flexible 
strategy is defined. This method is apparently 
similar to the fl-flexible method of Lance & 
Williams (1967) in producing a series of trees that 
represent transitions between space-contracting 
and space-dilating clusterings. To establish its 
potential utility in applied studies, this ),-flexible 
method deserves future research along the lines of 
DuBien and Warde's (1979) study on (fl, y)- 
flexible methods and Milligan's (1987) work 
evaluating the fl-flexible method. 

Special attention was paid to the algorithmic 
and monotonicity properties of combinatorial 
h-SAHN methods. The CP and RNN algorithm 
of the same method may produce radically dif- 
ferent results, as examples based on random and 
actual data demonstrated. 

The use of the RNN algorithm of MNDIS may 
destroy the ultrametric structure output by the CP 
algorithm of the same procedure. As far as I 
know, it has not been reported earlier that the 
ultrametric properties of a method depend on the 
algorithm employed. The explanation of this 
feature merits a detailed mathematical analysis of 
these algorithms. 

The analysis of field data from the rock 
grassland communities of the Sashegy Nature 
Reserve served as a basis for the comparison of 
d- and h-SAHN procedures. The classifications 
were considerably different suggesting that there 
is no clear-cut group structure in the data. The 
phytosociological implication of the results is that 
the existence of the community types formerly 
described from the study area cannot be con- 
firmed in the presence/absence case. Instead, 
there is a species richness gradient from the open 
grassland towards the completely closed com- 
munities of northern exposition. The congruence 
among many clustering results still suggests that 
three noda are worth distinguishing for descriptive 
purposes. The multiple comparison of dendro- 
grams may help phytosociologists to select clus- 
tering procedures that reflect different aspects in 

the data. However, since the comparisons were 
based only on a single actual data set, a more 
extensive simulation study is needed to compare 
the performance characteristics of combinatorial 
clustering procedures. 
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A p p e n d i x  

The derivation of updating parameters for 
h-SAHN clustering methods. 

n h - S A H N  s t r a t e g i e s  

As far as the derivation of parameters is concerned, this is 
the simpler situation. In general, a total of all inter-object 
distances is reproduced from the six w-s, and then this total 
is divided by some function ofn. (n. = n h + n~ + nj) to yield 
a homogeneity measure for cluster Ch u C, w Cj. 

MNSSQ 
Since w o is obtained as the sum of all squared within-cluster 
distances divided by the number of objects in the cluster, we 
can write that 

1 
WiJ - Z d2q and 

El i + Eljp, q~Ci~)C  J 

1 
w i = - - Z d 2 q .  

nip,  qe. ci  

n tw  i is contained in both ( n ,  + ni)Whi and (ni + n j )w u ,  and 
nhw h and  n jwj  are also present twice, therefore the sum of 
squared distances within Ch u C~ ~ Cj is 

d2pq = (n ,  + ni)wh, + (n h + nj)woi + 
p, q E C h ~ C i ~ C j  

+ (n i + n j )w~ - nhwh - niwi - njwj . 
This sum divided by n. yields the sum of squares in cluster 
c~uc, ucj. 

M N V A R  

The total of squared distances in cluster C, w Cj is repro- 
duced as follows, 

W~-- 
1 

2 Z d~ and 
(n, + n j )  p , q ~ c , ~ c ~  

1 
w, = El,~p. c/d;~q" 
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Then 

E 
p, qeChWCiwCj  

d~2q = (nh + n , )Zwm + (nh + n~)Zwhj + 

+ (n, + nj)2w~g - n~wh - n~w, - n~w~.  

This sum divided by n. 2 yields the variance in cluster 
C, ~ C~ ~ C:. 

M N D I S  

The derivation of the updating parameters, shown for dis- 
tances, starts by reproducing the sum of distances within 
clusters: 

1 
w o = - -  ~ dpo and 

bijp, q ~ c ~ c g  

1 
w~= ~ ~ c,  

where the binomial coefficient b~ = (~') is the number of pairs 
within C~, and bu = (~' ~- "0. Then, by similar justification as 
in the above cases, the sum of all distances within cluster 
C ,  ~J Ci k) Cj is 

dpq = b~iwm + bh~wh~ + 
p,q~Chk) Ci~Cj  

+ b O.wij- b hW h -  b iw  i -  b jwj  . 

This sum divided by b. = (~) yields the average within- 
cluster distance for C h ~ Ci w Cj .  

c h - S A H N  s t r a t e g i e s  

The derivation of parameters starts by reproducing the total 
ofpairwise distances for the new cluster C h ~ C~ ~ C~. This 
quantity is divided by a function of n. yielding the homo- 
geneity measure for that cluster. Then, subtraction of 
unweighted or weighted homogeneity measures of clusters C h 
and C~ w Cj from this quantity gives the increment. 

M I S S Q  
w~ and wj are the sum of squares for clusters Ci and Cj, 
respectively, wu is the increase upon their fusion, therefore 
the sum of squares of cluster C~ ~ C~ will be w o. + w~ + w~. 

Thus 

and 

Z d,;~ = (n, + nj) (w.  + w, + wj) 
p*q~Ci~Cj  

E 
p, qECh kJCiwCj 

dA% = (nh + ni) (whi + wh + w,) + 

+ (n h+nJ) (whj+  w h+ wi)+ 

+ (n, + nj) (w U + w, + wj) - 

- nhwh -- n i w ~ -  njwj . 

This quantity divided by n. gives the sum of squares of cluster 
Ch u C~ u Cj. Then, the increase of sum of squares is 
obtained by subtracting the heterogeneity of clusters C~ ~ Cj 
and Ch, 

1 
w~,o = - Z d;~q - (w o + w, + wj + w~) = 

~ , p , q ~ C h ~ C l ~ C j  

1 
= --[(nh + ni)Whi + (nh + nj)whj  + ((n, + nj )  - n . )w~ + 

n. 

+ ((n i + n j )  + (n h + ni)  - n i - n . ) w  i + 

+ ((n, + n j )  + (n h + n j )  - nj - n . )wj  + 

+ ((nh + ni)  + (nh + n j )  - n,~ - n . ) w h ] .  

The last three terms cancel, so the formula reduces to 

WhW = l [ (nh  + ni)Whi + (nh + n:)whj -- nhw~] , 
n. 

therefore parameters 2 h, 2i and 2j are zero. 

M N V A R  

The variance of cluster (7,. w Cj may be determined according 
to the formula 

n~ nj 
V A R  (C~ w Cj ) = w o + w~ + wj , 

ni + nj n~ + nj 

and similar relations hold for V A R ( C h w  C~) and 
V A R ( C h  u Cj). Then, the variance of Ch U Ci w Cj will be 

1 
V A R ( C  h ~ C, u Cj) = n.2 [(n, + nj) 2 V A R ( C ,  ~ Cj)  + 

+ (n h + ni)  2 V A R ( C  h ~ Ci)  + (n h + nj) 2 V A R ( C  h u Cj )  - 

- n~w h - n 2 i w i -  n ~ w j ] .  (7) 

The variance before the fusion of Ch with C~ w Cj is 

ni + nj 
V A R ( C h ;  C, ~ Cj )  = nh w h + V A R ( C ,  ~ C j ) .  

rl. n. 
(8) 

Substitution of variances into (7) and (8), and subtraction of 
(8) from (7) yields the increment sought: 

Wh, O. = 
(n h + ni)  2 (nh + n j )  2 

n~ " wh, + n ~ W h j  + 

((n,+__nJ) z n ~ + n J ) w o +  

+ \ n 2. n. 

+ n2. Wh + 



+ n? w~ + 

( n ~ + n j n h + n j n i  ~ . )  
+ n 2 - w j .  

The last three terms cancel and the formula reduces to: 

Wh,ij = - -  
(n h + hi) 2 (n,~ + nj)  2 nh(n i + . 

n? w m +  n 2. whJ n 2 nj)wi j  

W M I D I S  
Cluster sizes are disregarded so that the average distance 
within cluster C~ ~ CJ is 

1 1 
D I S ( C ~ u  Cj )  = w~ + 2wl  + 2wJ , (9) 

and similar relations exist for D I S ( C  h w  Ci)  and 
D I S ( G ,  w Cj).  The average distance within Ch w C~ u C i is 
calculated as 

D I S (  C h w C, u Cj )  = 1 [bh~DiS( Ch W Ci)  + 
17,. 

+ b h j D I S ( C h ~  Cj)  + b ~ j D I S ( C i u  Cj )  - 

- bhwh - b ~ w ~ -  b j w j ] .  ( 1 0 )  

The average distance before the fusion of C h with C~ u Cj is 

D I S ( C h ;  C t ~ C j ) =  ~Wh + ~ D I S ( C i ~ C j ) .  (11) 

Substitution of average distances into (10) and (11), sub- 
traction of (11) from (10) and subsequent rearrangement of 
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the formula give the recurrence relation: 

= 1 [bhiWh ~ + bhjwhJ + Whj j  

+ (b¢j - b . /2 )w~  - ((bh + ninj)/2)w,~ + 

+ ((b. - 2 b f -  2nhnj)/4)w~ + 

+ ((b. - 2bj - 2 n h n i ) / 4 ) w j ] .  

U M I D I S  

Formula (9) is replaced by 

DIS(CiuCj)=wo. + b i w i +  bj  w] 
bi + bj b~ + bj 

and expression (11) is rewritten as 

(12) 

D I S ( C h ;  Ci w Cj ) bh b U = w h + D I S ( C i w  C i ) .  (13) 
b h + bij bh + b o 

Substitution of average distances into (12) and (13) and 
subtraction of (13) from (12) leads to a very complicated 
formula which cannot be brought into a much simpler form 
because sums of binomial coefficients are present in the 
denominators. It is left to the reader to show that the recur- 
rence relation for UMIDIS takes the form 

I 
wh. ~ = ~- [bhi Whi + bhj Whj + (b o. - b. ba/(bh + b o )) w~ + 

o , ,  

+ (bhbhi/(b h + bi) + bhbhJ(b h + bj) - 

- bhb./(bh + ba) - bh )w  h + (bibo/(b i + bj) + 

+ bibhi/(bh + bi) - bib.bg/((bh + bg) (bi + bJ)) - b i )wi  + 

+ (bjbo/(b i + bj)  + bjbhJ(b h + bj)  - 

- bjb.bu/((b h + b#) (b, + bj))  - b j ) w j ] .  (14) 


