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Abstract
Questions: Are ordinal data appropriately treated by multi-
variate methods in numerical ecology? If not, what are the
most common mistakes? Which dissimilarity coefficients,
ordination and classification methods are best suited to ordinal
data? Should we worry about such problems at all?
Methods: A new classification model family, OrdClAn (Ordi-
nal Cluster Analysis), is suggested for hierarchical and non-
hierarchical classifications from ordinal ecological data, e.g. the
abundance/dominance scores that are commonly recorded in
relevés. During the clustering process, the objects are grouped
so as to minimize a measure calculated from the ranks of within-
cluster and between-cluster distances or dissimilarities.
Results and Conclusions: Evaluation of the various steps of
exploratory data analysis of ordinal ecological data shows that
consistency of methodology throughout the study is of pri-
mary importance. In an optimal situation, each methodologi-
cal step is order invariant. This property ensures that the
results are independent of changes not affecting ordinal rela-
tionships, and guarantees that no illusory precision is intro-
duced into the analysis. However, the multivariate procedures
that are most commonly applied in numerical ecology do not
satisfy these requirements and are therefore not recommended.
For example, it is inappropriate to analyse Braun-Blanquet
abudance/dominance data by methods assuming that Euclidean
distance is meaningful. The solution of all problems is that the
dissimilarity coefficient should be compatible with ordinal
variables and the subsequent ordination or clustering method
should consider only the rank order of dissimilarities. A range
of artificial data sets exemplifying different subtypes of ordi-
nal variables, e.g. indicator values or species scores from
relevés, illustrate the advocated approach. Detailed analyses
of an actual phytosociological data set demonstrate the classi-
fication by OrdClAn of relevés and species and the subsequent
tabular rearrangement, in a numerical study remaining within
the ordinal domain from the first step to the last.

Keywords: Classification; Clustering; Dissimilarity; Multidi-
mensional scaling; Non-metric; Ordinal measure; Partition.

Abbreviations: AD = Abundance/Dominance; CL = Com-
plete Link; DC = Coefficient of Discordance; ED = Euclidean
distance; O = Ordinal; M = Metric; NMDS = Non-metric
Multidimensional Scaling; OC = Ordinal Clustering; SL =
Single Link; UPGMA = Unweighted Pair Group Method or
Group Average Clustering.
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Introduction

Attention in numerical ecology is often focused on
sequences or orderings. Sampling is the first phase of
study in which an ecologist may be concerned with
ordered information, for example, when phenological
sequences, tolerance regimes, toxicity levels, and abun-
dance/dominance relationships among species are as-
sessed. Such observations can be summarized in terms
of ordinal variables (Anderberg 1973). These are sim-
pler than ratio scale (‘quantitative’) variables whose
measurement requires more precision and effort. The
possibility of defining a rank order arises again when
expressing similarity and dissimilarity relationships
among study objects or variables. One may decide that,
no matter how detailed the raw data are, only rank
values are to be used in calculating the similarity of
objects (e.g. rank correlation, Legendre & Legendre
1998). This decision may be justified, for example, on
the grounds that the original data are outcomes of impre-
cise measurement, so that only their rank order is reli-
able. In a later stage of the study, having computed a
symmetric matrix of pairwise distances or similarities,
one may decide to forget about the actual resemblance
values and replace them by ranks before further process-
ing (Clarke 1993, 1999). Given a matrix of Euclidean
distances (ED) or other metric measures, the user may
instruct the computer to perform a multivariate analysis
of objects such that the metric properties are disregarded
and the sequence of distance values is emphasized during
the computations. Non-metric multidimensional scaling
(NMDS, Kruskal 1964) is a case in point. The graphical
illustration of results may also follow a similar logic. For
example, in displaying a hierarchical classification by a
ranked dendrogram (Lapointe & Legendre 1991; Podani
2000b) we forget about the values (weights, e.g. dissimi-
larities) assigned to the levels and interpretation is re-
stricted to the fusion sequence of clusters.

The above examples sufficiently illustrate that ordi-
nal properties are potentially present in any stage of a
numerical ecological study. However, ecologists often
fail to consider which analysis methods are appropriate
for their ordinal data, notwithstanding Dale’s (1989)
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recommendations. There are some pitfalls that the ecolo-
gist must be aware of when making decisions along the
complex pathways of exploratory data analysis. It is
therefore worth examining in more detail the ordinal
properties emerging in the different steps of ecological
surveys. Particular attention must be paid to the validity
of possible decisions made when passing information
from one stage to the other. I put forward some general
recommendations that may be considered by numerical
ecologists in the preparation of study designs. First a
short review of existing methodology is presented, with
emphasis on the somewhat neglected methods of ordi-
nal classification. A new ordinal clustering procedure is
introduced that may serve as a simple alternative to
existing multivariate techniques utilizing ordinal infor-
mation in the data. For consistency, I shall use the term
‘ordinal’ in the widest sense of the word, as a reference
to any mathematical construct (a variable, a resem-
blance function, a classification etc.) or a method (scal-
ing, clustering) that relies upon linear ordering of cer-
tain items (data values, coefficients, objects, clusters)
and does not consider other types of relationships, espe-
cially products and ratios. Although ‘ordinal’ is often
considered synonymous with ‘ranked’ (Critchlow 1985;
Dale 1989), this second term is applied here in a more
restrictive manner to sequences whose n members are
numbered by consecutive integers from 1 to n or by their
mean values if some positions are tied. The term ‘non-
metric’ is also understood sometimes as an alternative to
ordinal (e.g. Peay 1975), although it has a more general
meaning: all operations and properties disregarding dif-
ferences and ratios of data values are in fact non-metric.
Thus, we have the following relations of inclusion:
ranked data are a particular type of ordinal data, and
ordinal data are a particular type of non-metric data (i.e.
non-metric ⊃ ordinal ⊃ ranked), which govern the usage
of these attributes throughout the paper.

Methodological pitfalls

In order to expand the topic outlined in the first
paragraph of the Introduction, let us consider the con-
ventional methodological sequence implied by explora-
tory analyses of ecological data, namely

SAMPLING → DATA → RESEMBLANCE →

Each move between these levels of abstraction can be
characterized by whether ordinal (O, i.e., sequence- or
rank-based) or metric (M, i.e., difference/ratio-based)
information is considered. Associated to these sequences
are some typical examples often encountered in the
literature of numerical ecology:

Sequence 1

The sampling process yields abundance estimates
such as percentage cover, counts or biomass; these
quantitative data are used to calculate metric resem-
blance measures but then the investigator might decide
to reduce the analysis to the ordinal level in order to
exploit the advantages of non-metric multidimensional
scaling (e.g. arch effect diminished, gradient recovery
enhanced, solution forced into a user-specified number
of dimensions, and linearity constraints released). In
fact, the majority of NMDS applications to ecological
data could be cited as examples.

This series, whose stages are denoted by M-M-O, is
perhaps the least problematic, but all scientists must be
aware of the fact that information is lost in the last step
when actual differences between distances become ne-
glected. Surely, data collection was too precise, com-
pared to the precision implied by the latest stage of the
analysis (Gill & Tipper 1978). There is always a possi-
bility therefore that in such cases lower sampling effort
by recording simpler types of data could have led to
similar results and conclusions.

Sequence 2

Relevé data comprising Braun-Blanquet-type abun-
dance/dominance (AD) scores commonly used in phyto-
sociology (Mueller-Dombois & Ellenberg 1974) or other
ordinal data formats mentioned in the Introduction are
converted to metric resemblance measures by, e.g. the
Euclidean distance function, and then the analysis be-
comes ordinal again by applying NMDS to achieve the
same goals as above.

Perhaps the worst-case scenario, O-M-O, is repre-
sented by this series. The distances, even if they are
computed formally by a metric coefficient, are based on
variables actually measured on the ordinal scale to which
arithmetic operations do not apply (cf. Krauth 1986;
Dale 1989). Furthermore, metrizing ordinal information
introduces illusory precision to the analysis, and this
new ‘metric’ information in the distances is largely
ignored again in the final NMDS anyway.

Sequence 3

From the same starting point as in ‘Sequence 2’, the
distance matrix is processed by Ward’s (incremental
sum of squares) clustering method or principal coordi-
nates analysis, procedures implicitly assuming that the
data space is Euclidean. Another, perhaps more com-
mon, example is that the raw data matrix is taken as a
contingency table and then some form of correspond-
ence analysis is used to obtain a simultaneous ordination

CLASSIFICATION

ORDINATION



- Multivariate exploratory analysis of ordinal data in ecology - 499

of species and sites.
This O-M-M sequence is also very problematic be-

cause of the same illogical distance conversion as in
‘Sequence 2’, so that the subsequent metric clustering or
ordination procedure can be no more than a self-decep-
tive attempt to preserve a ‘metric’ structure that does not
exist. Data collection is the weakest point in studies like
this and the preceding one: the ecologist deliberately
disregards (often very large) actual differences when
recording ordinal scores. Then, it may not be justifiable
that differences between distances obtained from such
variables are taken as seriously as is implied in the use of
sum of squares clustering or correspondence analysis.

Similar criticism applies to a closely related se-
quence, O-O-M, in which ordinal coefficients are sub-
jected to metric analysis.

Sequence 4

Distances or dissimilarities calculated from abun-
dance data are replaced by their ranks to obtain a new
symmetric matrix. Then, the matrix of these converted
measures is subjected to metric clustering or scaling
methods, for example, those mentioned in ‘Sequence 3’,
to obtain a classification or an ordination.

This methodological path implies an M-O-M series.
The first shift from metric to the ordinal may be ex-
plained by the user’s intention to reduce some noise, for
example, but then it seems illogical to turn back to a
metric space in which all arithmetic operations are mean-
ingful. In other words, we wish to reach again an illu-
sory increase of precision at the final stage.

It is seen immediately that these four methodologi-
cal sequences have an important property in common:
ordinal and metric properties are confounded along the
analytical path. Switching from one mode to the other
certainly has some risk. Stepping down from M to O is
possible, but some information is always lost. A ‘jump’
from O up to M appears more controversial, because it
implies increase of information which may not be
mathematically correct. Ideally, if we are satisfied
with a simplified sampling strategy that yields ordered
data (such as AD scores, water quality categories), then
in the resemblance space we should also be satisfied
with the ordinal treatment, using an appropriate order-
based statistic. Subsequent multivariate analysis should
also be ordinal in nature: only the order of dissimilari-
ties should be considered by the algorithm. That is, the
sequence O-O-O is the admissible combination of
choices for ordinal data. The manner in which one can
achieve this by data collection, by the calculation of
resemblance and by scaling and clustering is overviewed
next in the discussion of the three main steps of multi-
variate exploratory analysis.

Step 1. Sampling: types of ordinal data

The ecologist makes up his/her mind at the outset
about the data type to be recorded in field work. This is
a most important decision because, as we have seen
above, all subsequent steps of the analysis will depend
on this initial stage. Of the four possible scale types
(nominal, ordinal, interval and ratio, Anderberg 1973),
the ordinal is the most problematic to deal with
computationally, because differences, products and ra-
tios of possible values are not interpretable. The choice
of the multivariate method to be used is further compli-
cated by the existence of subtypes within the class of
ordinal variables (Dale 1989; Podani 1999).

Fully ordered versus partially ordered data

When a variable has as many states as the number of
objects (for example, x1= {2, 4, 7, 8, 11, 9}), we are
concerned with a fully ordered variable. This allows
unambiguous ordering of all objects. Complete ordering
is rarely possible, however, because in most cases the
number of realized data values is considerably fewer
than the number of objects and the same value may
occur more than once. We are thus concerned with
partially ordered variables (Critchlow 1985; Dale 1989),
for example, x2= {1, 3, 4, 5, 4, 5}, and the rows of Table
1a. This means that in the sequence of values ties are

Table 1. Artificial data matrices illustrating various types of
ordinal data. a. Partially ordered, non-commensurable vari-
ables (indicator values), b. Fully ranked variables; c. Partially
ordered, commensurable variables (AD values). Variables are
rows, objects are columns.

a Plant species
1 2 3 2 1 2 1 2 3 2
4 2 3 2 3 2 3 2 3 2

Environmental 1 5 3 2 3 2 1 2 1 2
variables 2 1 3 2 2 5 3 2 4 2

1 3 3 4 3 2 3 2 3 2
1 2 2 2 3 2 0 2 3 2
1 2 3 1 3 2 0 2 5 1
1 3 1 2 2 2 0 1 3 2

b Animal species
1 1 2 4 8 6 7
2 2 1 3 7 7 6
3 3 3 2 6 8 8

Food 4 4 5 1 4 4 5
types 5 5 4 5 5 5 4

6 6 7 6 2 2 3
7 8 8 8 3 1 2
8 7 6 7 1 3 1

c Sites (plots, quadrats)
0 + 0 4 0 1 1 0 + +
1 0 0 4 0 1 1 0 + 0

Plant 0 1 0 3 3 1 2 0 + +
species 1 + 0 0 0 0 1 0 0 +

0 + 0 0 0 1 2 4 0 +
2 0 1 0 1 0 3 4 0 +
0 1 0 2 0 1 4 0 + +
1 + 0 0 0 1 1 0 2 1
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unavoidable: objects having the same score will have
the same position in the ordering. Many ecological
variables are of this type, for example, those summariz-
ing the humidity, light and acidity requirements of plants
(‘indicator values’, Mueller-Dombois & Ellenberg 1974).

Ranks

Direct observations (e.g. food preference of target
animals, phenological series or the sequence of indi-
viduals arriving at a light trap) or data conversions may
lead to ranked data, a special subset within the ordinal
category. A data vector is fully ranked if its entries
correspond to consecutive integers from 1 to n (columns
in Table 1b). For the example above, ranking implies the
transformation of x1 into x1'= {1, 2, 3, 4, 6, 5}. Ties in
the original sequence x2 lead to partially ranked data
vectors, such as x2' = {1, 2, 3.5, 5.5, 3.5, 5.5}. That is,
tied positions in the order are taken by the mean values
of the corresponding ranks.

Commensurable versus non-commensurable variables

This distinction reflects whether a variable can be
used to order the objects and at the same time a given
object can also be used to rank all the variables (Podani
1999). This duality is true for commensurable variables
(sensu Orlóci 1978). Fully ordered data satisfy these
requirements: each row or a column of the data matrix
represents an interpretable sequence – even though full
ordering in one direction does not exclude the possibil-
ity of ties in the other direction. Certain partially ordered
data types are also commensurable, for example the AD
scale and many of its derivatives commonly used in
vegetation ecology (Table 1c). In community data con-
taining such AD values, the objects (sampling units,
quadrats, relevés) can be ordered meaningfully for each
species, starting from those with the lowest AD value up
to those having the highest score. Also, the species can
be ordered according to their importance in a particular
sampling unit. Other types of partially ordered vari-
ables, such the indicator variables mentioned above, are
incommensurable: ranking of objects for a given vari-
able is meaningful, but no ordering of indicator vari-
ables for a sampling unit can be done: the comparison of
an indicator value of 4 for humidity with another value
of 3 for acidity would be invalid (Table 1a).

Step 2: Ordinal measures of resemblance

A fundamental requirement if resemblance meas-
ures are to be used with ordinal data is order invariance.
This means that the coefficient cannot change as long as

the ordering of data values remains the same. Measures
for expressing pairwise dissimilarities between objects
based on ordered data are widely available, yet they are
less commonly used in numerical ecological studies
than regular coefficients suitable to interval or ratio-
scale variables. The choice among them is governed
primarily by the subtypes of the ordinal variables present
in the data. Rank statistics (such as Spearman’s ρ or
Kendall’s τ, see Legendre & Legendre 1998; Podani
2000a) could be mentioned first. However, these are
appropriate only for comparing fully ordered variables
with equal intervals between the neighbouring values on
the ordinal scale or, more commonly, in cases where the
original data scores are replaced by their ranks. This is
an important condition because differences between
ranks are interpreted (and squared by Spearman’s ρ).
These coefficients are more (ρ) or less (τ) sensitive to
ties, and require correction terms if ties are present.
There is a third coefficient, Goodman-Kruskal’s (1954)
γ which simply disregards the ties. For objects j and k,
this measure is the number of variable pairs similarly
ordered for j and k divided by the number of variable
pairs that are ordered at all (App. 1 provides an example
of calculation). Since the ties are excluded from the
comparison, the similarity values can be based on a very
different number of variable pairs. This imbalance can
be removed through the hybrid coefficient of discord-
ance suggested by Podani (1997) which is primarily an
ordinal measure, but it does consider presence/absence
relationships for species pairs that are not ordered un-
ambiguously for the object pair being compared (App.
1). This coefficient becomes identical to Kendall’s τ
and Goodman-Kruskal’s γ for fully ordered variables
(Podani 1997). For more information on the math-
ematical properties of measures of rank correlation,
including those not mentioned here, the reader is re-
ferred to Siegel & Castellan (1988). For partially or-
dered data, Dale (1989) recommends the use of other
coefficients, such as the Levenshtein measure which
finds the minimum number of moves necessary to
transform one series into the other. This problem can
be solved by combinatorial optimization, not applied
routinely in numerical ecology.

Mixed data containing ordinal variables

In ecological data matrices, nominal, ordinal and
‘quantitative’ variables often appear simultaneously. In
these cases, Gower’s general formula, extended to ac-
cept ordinal data (Podani 1999), may offer a solution for
expressing similarity between objects. For any two ob-
jects j and k, the contribution of a given ordinal variable
to the similarity value depends on the number of objects
between j and k in the rank order. In a sense, this is a
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nearest neighbour measure of similarity in partial rank
orders; it may violate the triangle inequality principle
and is therefore non-metric – which is not a problem in
ordinal data analysis. The formula may also be extended
using the logic of rank correlations: the absolute differ-
ence between the ranks is considered in the comparison,
a quantity understood as the number of elementary
changes needed to move an element into a position
taken by the other element in the rank order. Of course,
Gower’s coefficient may also be applied to a data matrix
comprising ordinal variables only. In that case, the
coefficient differs from all those discussed in the previ-
ous paragraph, because it will correspond to the average
of number of steps required to move one object to the
position of the other in the rank order for one variable.

Step 3: Ordinal exploratory analysis

Ordination

In statistical ecology, the most widely accepted and
routinely used ordination technique which relies upon
ordinal information is undoubtedly non-metric multidi-
mensional scaling. Its relative merits and potential dis-
advantages have been discussed by many authors, some-
times with contrasting conclusions (Kenkel & Orlóci
1986; Gauch et al. 1981; Gordon 1999; Digby &
Kempton 1987; Clarke 1993; Legendre & Legendre
1998; Podani 2000a). Nevertheless, most authors agree
that NMDS and its variants (e.g. local NMDS, Sibson
1972; Prentice 1977) represent a good alternative to the
metric procedures such as principal components analy-
sis and correspondence analysis. Release of the strict
metric criteria allows, for example, that the entire ordi-
nation may be restricted to two dimensions.

In NMDS, the dissimilarity matrix of objects is not
involved in the calculations directly. The dissimilarities
are used to constrain a set of ordination distances to fit
their rank order as closely as possible. Consequently,
any change in the dissimilarities which does not influ-
ence the ordering relationships will have no impact on
the final ordination; that is, the method is order-preserv-
ing. Differences among results may arise only from the
iterative nature of the scaling algorithm. However, the
result is certainly a Euclidean representation of points.
Therefore, Gordon (1999) suggests that the name ordi-
nal scaling is perhaps more appropriate than non-metric
scaling.

Clustering

Given the success and popularity of NMDS (or
ordinal scaling), the natural question arises: is there a

possibility to develop analogous methods in the other
large family of exploratory data analysis techniques,
namely cluster analysis? This is answered by examining
the problem in detail and by exploring the literature for
existing proposals and approaches. Although mathemati-
cal details are kept to the minimum, it is hoped that the
following discussion illuminates the complexity of this
matter satisfactorily. Readers interested only in the newly
proposed classification models may skip this part, and
turn immediately to the description of the clustering
criterion and algorithm at the end of this subsection.

Order invariance is satisfied for those ordinal clus-
tering strategies for which the classification topology
changes only if the rank order of input dissimilarities is
modified, while any other change should not influence
the results. On the analogy of ordinal scaling, the term
‘ordinal clustering’ (OC) will be coined with these
methods. This emphasizes contrast with metric cluster-
ing, which includes widely used hierarchical and non-
hierarchical procedures of numerical classification, such
as group average sorting (UPGMA), incremental sum of
squares agglomeration (Ward method), median and the
centroid strategy (plus many others that require direct
access to data during the analysis, such as k-means
clustering, fuzzy c-means clustering; see major reviews
of numerical classification, e.g. Anderberg 1973; Everitt
1980; Gordon 1999). The fact that metric methods are
not order invariant suggests that these cannot be recom-
mended for analysing matrices derived by ordinal coef-
ficients.

There are two widely-known hierarchical techniques,
namely single link (SL, nearest-neighbour) and com-
plete link (CL, furthest neighbour) sorting, which pos-
sess the property of order invariance (Hubert 1973;
Boberg & Salakoski 1993). This is true even though
both have completely meaningful metric interpretation
as well: nearest neighbour distance for SL and cluster
diameter for CL. SL clustering has the further advantage
of being insensitive to tied minimum distances (Jardine
& Sibson 1971). However, the use of nearest neighbours
and cluster diameters as clustering criteria has the dra-
matic consequence that only a small portion of the
ordered coefficients is used. The dissimilarity values
that fall into the interval between fusion levels g and g+1
may be rearranged into any sequence within that inter-
val without any effect upon the resulting classification.
In fact, for a set S of m objects, if the rank order of the m–
1 values that give the fusion levels remains fixed, we
have complete freedom to change arbitrarily the other
(m2–3m)/2+1 values in the semi-matrix of dissimilari-
ties! These values therefore play only a passive role in
clustering. It means that order invariance must be satis-
fied for a small subset of dissimilarities and that a large
amount of information present in the matrix remains
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unexploited. I do not enter into details regarding poten-
tial advantages and disadvantages of these two strate-
gies, because this topic has been thoroughly examined
and discussed in the classification literature (cf. Jardine
& Sibson 1971; Gordon 1999). Nevertheless, ecological
use of SL and CL, especially in the past decades, ap-
pears relatively limited.

Several extensions of the CL and SL method have
been proposed, all maintaining the order invariance
property. Peay’s (1975) approach, for example, leads to
overlapping clusters, a solution mostly of theoretical,
rather than practical significance, owing to the relative
complexity of the result even for small problem sizes.
Krauth (1986) did not use any dissimilarity coefficient,
and defined nearest neighbours directly based on par-
tially ordered raw data. His concept of neighbourhood,
however, appears less applicable to cases when objects
take values that are far from being neighbours.

In order to allow the use of different types of eco-
logical variables, including ordinal ones, Matthews &
Hearne (1991, see also Matthews et al. 1991a, b; Landis
et al. 1997) suggested a non-metric classification method
that is also free from the use of any dissimilarity coeffi-
cient. In it, the clusters are directly identified from the
examination of each variable separately after the data
values are discretized into a few categories. Cluster
validity is measured by the proportional reduction in
error, as expressed by Goodman & Kruskal’s (1954) λ
coefficient. Clusters are examined from random starts
and iterative relocations are used to produce heuristic
approximations to the optima. The partition supported
by the majority of variables is accepted as the best
solution, thus reflecting some optimal ‘consensus’ among
the variables. The method is truly non-metric, rather
than just ordinal, because the λ-coefficient is unaffected
by permutations of categories. That is, sequential infor-
mation in ordinal or interval characters is not utilized
during the optimization search; the method reduces
ordinal information to nominal, and the loss of informa-
tion remains uncontrolled in this analysis.

Further possibilities of partitioning arise from the
use of linear programming based on the optimization of
an objective function. Marcotorchino & Michaud (1979)
suggested using the sum of rank differences counted for
each variable as partitioning criterion. Owsinski &
Zadrozny (1986) proposed a more complicated formula-
tion. It involves calculating an objective function which
also considers the rank order of objects separately for
each variable. Then, for each pair jk of objects the num-
bers of object pairs that fall between and outside j and k
in the order are counted, and the differences summed to
provide a statistic for that object pair. This statistic,
computed for all pairs of objects, is subjected to linear
programming with various parameters to provide an

array of different solutions. None of the two approaches
produces a nested hierarchy of objects if the optimiza-
tion is performed for increasing numbers of clusters.

Divisive methods described by Hubert (1973) con-
sider dissimilarities of objects to members of a particu-
lar pair of objects in building a hierarchical classifica-
tion. Three clustering criteria are suggested, all based on
finding in each iteration step the most dissimilar pair of
objects, jk, that still belong to the same cluster, say C.
Objects j and k form the nodes of the resulting two
subgroups, C' and C'', and their relationships to the
remaining objects of C will decide on assignment into
either C' or C''. The three alternatives differ from each
other in this assignment procedure, two of those analo-
gous to the SL and the CL criterion, respectively. The
third one proceeds with finding the next object which
falls farthest from either j or k. Hutchinson & Mungale
(1997) have suggested a procedure, pairwise partition-
ing, based on the ordering of all similarities. A partition
of objects into two groups is obtained by examining
each pair, jk, of objects. One group will contain objects
that are more similar to j than to k, whereas the objects of
the other group will have the opposite relationship to
this pair. This partition can be coded as a binary feature
vector, and the vectors determined for all possible pairs
of objects are summarized in a feature matrix, the start-
ing point of a hierarchical classification. A comparison
with SL, CL and Hubert’s strategies reveals, however,
that pairwise partitioning produces conflicting results
even for a small number of objects. Therefore, this
method is less promising in exploratory data analysis,
and has no more than theoretical relevance. Hubert’s
divisive strategies, to my knowledge, have never been
applied to ecological data either.

A potential reason for neglect is that Hubert himself
(1973) showed superiority of an agglomerative proce-
dure which optimizes an objective function, called α
index, throughout the analysis. The function is a good-
ness-of-fit measure for partitions. The denominator is
the number of object pairs already in the same cluster for
which there is at least one pair of objects that are in
different clusters, yet their dissimilarity is lower. This
sum is divided by the possible maximum to yield a range
of [0,1]. The value of this index is minimized in each
algorithmic step, the resulting hierarchy is nested but
the change of the function is not necessarily monotonic.

As a true alternative to NMDS, Faith (pers. comm. in
Clarke 1993) raised the possibility of developing a
classificatory method which minimizes the difference
(stress) between the original distances and those implied
by a dendrogram so as to preserve the rank order of
distances as faithfully as possible. According to Shah &
Farach-Colton (in press), there is no guarantee that any
particular distance matrix can be converted to a tree
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such that the ordering relationships among distances are
completely maintained by path lengths. Furthermore,
even if such a tree does exist for a given matrix, its
finding poses computational difficulties that are as yet
unsolved (i.e. the problem is NP-hard, Lewis & Papa-
dimitriou 1978). The situation does not change if we are
satisfied by partial orders in such a way that the ordering
relationships for any three objects in the tree are consist-
ent with their original distances. Although Shah &
Farach-Colton coined the term ‘total ordinal clustering’
and ‘triangle ordinal clustering’ for the determination of
these two types of trees, respectively, these become
classifications only if the trees are rooted (to provide a
dendrogram) or broken into isolated subtrees (to pro-
vide a partition). Ordinal tree fitting is perhaps a more
appropriate name for this method. Shah & Farach-Colton
emphasize the importance of finding good approxima-
tions to the optimal trees, without concrete suggestions,
and no recommendations are given on the derivation of
dendrograms and partitions from these trees.

This discussion shows that whereas ordinal proper-
ties have been examined for clustering and ordination,
the studies are scattered among a diverse literature and
are confined to the theoretical aspects. This partly ex-
plains why currently available procedures satisfying
order invariance are almost completely neglected in
ecology. Further reasons for the general ignorance are
the complexity of the problem and its solutions, and the
lack of an easy-to-use software. I describe below a
conceptually simple, heuristic procedure which adopts
well-known clustering algorithms and utilizes the entire
set of ranked dissimilarities in every cycle of the compu-
tations. Furthermore, it is made available through a
multivariate data analysis package for general use.

A new clustering criterion. As a starting point, let us
consider a measure of the explanatory power of vari-
ables in a partition of m objects (Podani 1998). This is
originally suggested as an a posteriori measure of the
goodness of partition which can then be used to deter-
mine the optimum number of clusters. However, the
underlying idea of using within-cluster and between-
cluster ranks of distances can also be fruitful as a clus-
tering criterion to build up both hierarchical and non-
hierarchical classifications. App. 2 describes the deriva-
tion of this measure in detail. Here, I present only the
formula and a brief explanation necessary for under-
standing the definition of clustering algorithms.

Both algorithms of ordinal clustering suggested be-
low, first order the m(m–1)/2 distance values so that
each djk is replaced by its rank, rjk. Then, the same
clustering criterion is considered:

U = (Rw – Rmin ) / (Rmax – Rmin) (1)

where Rw is the sum of ranks of within-cluster dissimi-
larities, Rmin is the possible minimum sum of such ranks
for the given number of clusters and for the given
numbers of objects in each cluster, and Rmax is the
possible maximum of such sums. The value of U has a
range of 0-1, 0 indicating that all within-cluster dissimi-
larities are smaller than the between-cluster dissimilari-
ties, and 1 indicating the opposite situation. App. 2
discusses a related criterion in which the expectation,
rather than the maximum is used to standardize the
coefficient. Note that a similar approach has been taken
by Clarke (1993) in developing an a posteriori statisti-
cal test of similarities between and among groups of
sample sites. He used the averages of ranks in the
procedure ANOSIM, most widely used in environmen-
tal impact assessment studies. There is a certain similar-
ity to Hubert’s (1973) goodness-of-fit measure as well;
both his α index and U reflect a global property of the
classification being constructed, rather than a local
pairwise relationship of two objects.

Algorithms.  The non-hierarchical clustering strategy,
OrdClAn-N, advocated here is essentially an iterative
relocation procedure, similar to k-means clustering. Since
the underlying algorithm is well-known from the litera-
ture (Anderberg 1973; Gordon 1999), there is no need to
give a more formal description. The classification prob-
lem is to find a partition P of a set S of m objects into κ
clusters which minimizes U for a given dissimilarity
matrix D, where κ is chosen by the investigator. The
analysis starts from a random or a user-specified parti-
tion. The algorithm examines m(κ–1) relocations in
each step and moves object i from group a to b if this
move leads to the highest decrease in the value of U in
that step. The iterations stop if no relocation of a single
object would improve the clustering criterion any fur-
ther. No move is taken if it would result in the decrease
of κ. Being iterative, the analysis may be trapped in
different sub-optimal solutions, depending on data struc-
ture and on the initial configuration. Therefore, several
runs are necessary to select the best of all results. There
is no guarantee, however, that the iterations will always
find the optimum classification.

The hierarchical version, OrdClAn-H, proceeds in
the same manner as all well-known agglomerative clus-
tering methods, except that in each cycle only one fusion
is allowed. The pair of objects or clusters is amalgamated
into a single cluster for which U calculated for all clusters
that have been created up to this point is the minimum. In
the dendrogram resulting from this agglomerative clus-
tering, the ranks of fusions (values from 1 to m–1) are
used, rather than the U values themselves, because this
criterion does not change monotonically. That is, the
result is a ranked dendrogram, rather than a weighted
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dendrogram (cf. Lapointe & Legendre 1991; Podani
2000b), a name which is consistent with the ordinal
properties considered throughout the analysis. (Com-
pare with NMDS, whose result is in fact a metric con-
struct.) Although the result is an ultrametric tree like any
conventional dendrogram, its topology may serve as a
starting point for finding an approximation to the Shah
& Farach-Colton tree, a possibility that could be ex-
plored in the future. The result of agglomerative cluster-
ing for a given number of clusters, κ, can be subjected to
non-hierarchical clustering with the same value of κ to
see whether improvement is possible. The method be-
longs to the double matrix approach described by Podani
(2000a): the ranks of similarities are stored in a semi-
matrix (upper half of a square matrix), and these values
are used in each cycle to compute a second matrix U
containing the clustering criteria which are used to select
object or cluster pairs to fuse. Therefore, once the ranks
have been determined, computing time will be propor-
tional to the 5th power of m – i.e. the clustering algorithm
has a time complexity of O(m5) – which may seem at first
glance too much. On a personal computer with Pentium
IV, the clustering of 80 objects in one of the examples
below took less than 10 seconds, so the relatively com-
plex algorithm poses no practical difficulties.

Both OrdClAn clustering algorithms have been
implemented in the SYNTAX 2000 program package
(Podani 2001) developed for exploratory data analysis
in the biological sciences. The programs run on per-
sonal computers equipped with WINDOWS operation
systems.

Illustrative examples

Admissible methodological schemes and the pro-
posed clustering algorithms are illustrated by three sets
of artificial data already referred to in the previous
sections (Table 1). The objective is to show the com-
binations of analytical options best used under different
circumstances. A more elaborate example relies upon
actual vegetation data, and many details of this analysis
are given in App. 3.

Artificial data

The data in Table 1a exemplify non-commensura-
ble, partially ordered variables. The objects (columns)
are plant species while each hypothetical variable corre-
sponds to an environmental factor, such as humidity,
temperature requirement, light, nutrient availability and
similar characters of the ordinal type. Thus, the scores
are indicator values reflecting species preferences or
optima. Calculation of extended Gower similarity among
species and subsequent application of OrdClAn-H and
NMDS are straightforward (Fig. 1). However, similar
analyses of variables are impossible, because the values
pertaining to different variables are not comparable in
any way. In fact, the present data format does not allow
any analysis of relationships among the variables, which
would only be possible with quantitative data.

Table 1b contains a fabricated set of data reflecting
food preferences of different animal species (columns)
obtained from feeding experiments. The data set is fully
ordered, character states are equidistant, and therefore
NMDS and OrdClAn-H using the U function can be

Fig. 1. Ordinal analyses for species (columns) of Table 1a. Ranked tree obtained by OrdClAn-H and two-dimensional NMDS
ordination. Both analyses are based on the expanded Gower coefficient with the nearest neighbour interchange option. Note that the
‘dissimilarity’ shown on the axis pertaining to the dendrograms in this figure and in Figs. 2-3 is merely the rank of the fusion leading
to the given cluster.
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performed from a matrix of rank correlations between
species. The property of commensurability holds, there-
fore the food types (i.e., the rows), which serve here as
descriptors of species, can also be subjected to similar
analyses to identify potential groupings. In the rows,
however, there are many ties so that Spearman’s ρ is a
good choice only if interest lies in column-wise cluster-
ing. Therefore, Goodman-Kruskal’s γ is applied to both
the columns and the rows to facilitate comparable R and
Q mode analyses of this data set (Fig. 2).

Commensurability holds for the partially ordered data
of Table 1c. The entries of the data matrix are Braun-
Blanquet’s AD scores for plant species as observed in

sample sites or quadrats (columns). The possible values
on this scale are 0, +, 1, 2, 3, 4, and 5. The appearance
of the non-number + in the data, indicating species
presence with very low abundance, excludes the possi-
bility of any analysis more sophisticated than ordinal.
There is an obvious symmetry in this case, so that
sample sites can be analysed by the same methods as
the species. To incorporate presence/absence informa-
tion for tied pairs, I selected the hybrid coefficient of
discordance (App. A) to calculate the dissimilarity
matrices, subjected in turn to NMDS and OrdClAn-H
based on the U function (Fig. 3).

Fig. 2. Ordinal analyses of data in Table 1b. a. Ranked tree obtained by OrdClAn-H and a 2D NMDS ordination of objects (columns),
b. Ranked tree and 2D NMDS ordination of variables (rows). All analyses are based on Goodman-Kruskal’s γ  (App. 1).
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Actual data

The raw data matrix comprises phytosociological
AD scores for 123 plant species in 80 sampling units
placed in a rock grassland community (Sas-hegy Nature
Reserve, Budapest, Hungary). The data were recorded
by the author in 1979 as percentage cover values, which
were then converted ‘down’ to Braun-Blanquetian AD
scores to create the sample data file. The 80 quadrats
were classified by seven combinations of dissimilarity
function and clustering strategy representing different
methodological sequences. OrdClAn-H and CL from
the matrix of the coefficients of discordance (App. A)
were chosen as O-O-O sequences, whereas UPGMA
clustering from the same matrix is an O-O-M series.

Euclidean distances were formally computed from the
ordinal data and then input to UPGMA and the Ward
method (O-M-M sequence), as well as to OrdClAn-H
and CL (O-M-O). The results are not reproduced here
(but see the detailed comparison of two selected analy-
ses in App. 3). Instead, the seven dendrograms were
evaluated by ordination to reveal their overall similar-
ity relationships. Each classification was described by
cluster membership divergences (Podani 2000b), and
then the dendrograms were compared in all possible
pairs using ED. The 7 × 7 distance matrix was then
subjected to principal coordinates ordination (for more
details and possibilities of such meta-analysis, see
Podani 2000a). The first three axes account for 27, 20
and 19% of the total variance, so that these are useful

Fig. 3. Ordinal analyses of data in Table 1c. a. Ranked tree obtained by OrdClAn-H and 2D NMDS ordination of objects (columns);
b. Ranked tree and 2D NMDS ordination of variables (rows). All analyses are based on the coefficient of discordance (App. 1).
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for depicting the dissimilarity structure of the dendro-
grams quite faithfully (Fig. 4). Axis 1 deserves particu-
lar attention, because it corresponds to the contrast
between the metric and the ordinal coefficients. The
relative closeness of OrdClAn-H and CL dendrograms
obtained from the DC matrix indicates that these two
ordinal procedures are similar in performance in this
case, even though there are substantial differences
between their algorithms. Dendrograms obtained
through options that are not recommended at all are
arranged relatively far from these two results.

Discussion

The significance of the subject matter of the present
paper may be underlined by noting two historical facts:

• In the past 60 years, enormous amounts of ecological
data have accumulated in publications and databases, a
great proportion in ordinal format. Lepš & Hadincová
(1992) suggested that more than 100 000 relevés had
been made by that time following the principles of the
Braun-Blanquet approach. This number is certainly a
strong underestimate, because for The Netherlands alone
there are ca. 400 000 digitized relevés available in databases
(Ewald 2001, 2003), and only for the province of
Mecklenburg-Vorpommern in Germany there are 50 000
stored (Berg et al. 2001). In fact, there may be millions of
relevés potentially available for data analysis.

• In the past decades, multivariate analysis of ecologi-
cal data have received considerable attention in hun-
dreds of papers and dozens of textbooks. In striking
contrast, very few authors emphasize the importance of
mathematically correct treatment of ordinal information
in exploratory data analysis.

It is therefore imperative to show the possibilities for
ordinal analysis and to see under what circumstances
these methods should be applied to ecological studies.
Although there is a wide range of methodologies avail-
able for appropriate processing of ordinal data, these are
not considered seriously in multivariate contexts in most
publications. For example, Guisan & Harrell (2000)
review the application of regression models to ordinal
ecological data, while Agresti (1999) expands the topic
to several modelling problems. This paper attempts to
fill the gap on the multivariate side by reviewing avail-
able methodologies, thus illuminating the unexpectedly
high conceptual diversity of this subject. As a summary,
arguments in favour of using ordinal methods are grouped
below.

Consistency

The first issue is consistency of the analysis. It
means that once the ecologist decides to rely upon
ordinal information, then changes the values leaving
this order intact, there should be no influence on the
steps of the study which follow. I referred to this as order
invariance for a study that implements a given combina-
tion of options for resemblance and scaling or clustering.
In an absolutely optimal situation, the result is also of the
ordinal type, such as a ranked dendrogram, but this is not
so with a partition (which is at the nominal level) and an
NMDS ordination (which is in fact a metric construct).

Fig. 4. Principal coordinates ordination of seven dendrograms,
each representing a different combination of resemblance
coefficient and clustering strategy applied to the Sashegy
phytosociological data. a. Axis 1 vs 2; b. Axis 1 vs 3.
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However, a data matrix whose columns and rows are
reordered to follow their separate one dimensional
NMDS ordinations or separate OC classifications (App.
3) is an ordinal result.

Order invariance is easily violated, unfortunately.
Euclidean distances or other metric coefficients com-
puted formally from ordinal data can change consider-
ably if the data are modified without influencing the
ordering of values. As a consequence, none of the subse-
quent analyses based on these metrics will be order
invariant. UPGMA or a principal coordinates analysis
from a matrix of ordinal dissimilarities will also change
if the coefficients are changed, even though their rank
order remains the same. It is possible to get very differ-
ent metric results from two dissimilarity matrices in
which the rank order of entries is identical. This is not
surprising, of course, if the dissimilarity was obtained
from metric data, but it is a problem if ordinal data were
used in deriving the dissimilarities. If we deal uniformly
with the data throughout the full study, then order in-
variance is guaranteed.

Precision

Overall statistical precision in the analysis is a
closely related matter. Ordinal data are often collected
in ecology for simple logistic reasons: to reduce costs
and effort in field work. That is, data quality is deliber-
ately low. Of course, there are other situations in which
ordinal values are the only carriers of information, and
there is no possibility for conversion to quantitative
data. In any case, the whole analysis cannot be any
better than the start (Gill & Tipper 1978), so that the
use of metric methods from an ordinal starting point
can only introduce a self-deceptive, illusory precision
into the analysis. The explanation of this statement is
straightforward: division and multiplication are com-
mon operations during computations in metric proce-
dures, and these are incorrect manipulations on order-
ings, while subtraction is meaningful only for ranks.

Nevertheless, attempts to embed ordinal informa-
tion into metric space may often prove successful. In
other words, if the eigenvalues of a matrix of ordinal
dissimilarities are all non-negative, then the inter-point
relationships can be faithfully represented by Euclidean
distances. I demonstrated this for mixed taxonomic
data (Podani 1999), using principal coordinates analy-
sis. This possibility, however, is not a justification for
using or preferring metric methods for ordination and
classification from ordinal measures. Rather, it is a
reflection of our inability to convert ordinal informa-
tion into ordinal measures in an ordinal way! Even
though we try to minimize arithmetic operations on
ordinal scores, we still count numbers of certain changes

in the sequences or calculate differences between ranks.
It is therefore understandable that the information flow
from data to resemblance is associated with a virtual
increase of precision and with the emergence of metric
properties. This point becomes clearer if we consider
that ordered dissimilarities may directly come from
observations without recording raw data. Psychologi-
cal experiments often provide subjective judgments
like ‘objects 1 and 2 are more dissimilar than objects 3
and 4, but less dissimilar than object pairs 2 and 5’ etc.
This is purely ordinal information, but no one should
be surprised to see that if judgments are converted to
ranks, then we create a dissimilarity matrix possibly
with Euclidean properties. However, if the same state-
ments are expressed by arbitrary ordinal numbers keep-
ing only the monotonicity of pairwise dissimilarities,
there is little chance for the matrix to satisfy the metric
conditions.

Tolerance

Several dissimilarity coefficients, irrespective of
the nature of raw data, are known to violate the metric
axioms (e.g. the Sørensen index for presence/absence
scores, cf. Podani 2000a). Similar problems result from
the imbalance of dissimilarities caused by missing
values, affecting, e.g. values of the Gower index (cf.
Legendre & Legendre 1998). The dissimilarity matrix
can have negative eigenvalues in this case, which may
be apparent for the investigator only if the complete
output list of a principal coordinates ordination is
scrutinized with sufficient attention. A consequence is
that perfect Euclidean representation of the dissimilar-
ity structure is not possible. Legendre & Legendre
(1998) provide several solutions for eliminating the
negative eigenvalues from the input matrix, whose
effect is negligible anyway if their magnitude is small
compared to large positive eigenvalues. Nevertheless,
it does not matter if violation of ‘Euclideanarity’ is
strong or weak; it is illogical to base the analysis on the
absolute values, differences or averages of such
dissimilarities. Ordinal exploratory analysis may pro-
vide alternative tools in such cases.

Ordinal analysis can tolerate even more than the
violation of metric axioms. Certain coefficients are not
suitable directly for arithmetic operations (e.g. averag-
ing, division) implied by the analytical procedure to be
used. Typical cases of this incompatibility arise when
linear correlations or measures related to angles be-
tween vectors (angular separation, geodesic metric,
chord distance) are subjected to certain types of clus-
tering (Ward’s method, for example). Needless to say,
ordinal agglomerative clustering has no restrictions in
this regard.
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Why worry?

A potential counter-argument against the recom-
mendations outlined above may be raised from experi-
ence accumulated in earlier studies. Upon examining
the literature, we find many papers reporting on ‘suc-
cessful’ applications of metric procedures to ordinal
data. Often, without being aware of the incompatibility
problem, the authors find the results highly interpret-
able, sometimes superior to simultaneous analyses of
the same objects described in terms of other types of
data. The authors may even realize that ordinal values
cannot be used in calculating conventional diversity
measures or linear correlations, but this does not prevent
their subjecting the data to correspondence analysis,
perhaps giving ‘good’ results. Ordinal values, of course,
‘do not cry’ when treated incorrectly during the highly
automated, black-box type processing of data by ‘user
friendly’ computer software. Robustness in the data
may only explain interpretability of results obtained by
an illogical combination of methods. As the phyto-
sociological example (App. 3) demonstrated, obvious
contrasts (closed vs open grasslands, rare vs more com-
mon species) may be detected in both ways – but this
cannot support the application of Euclidean methods to
ordinal data. Therefore, ecologists dealing with ordinal
data should be encouraged to revise the results of previ-
ous analyses to see how strong the discrepancies are that
are caused by the misuse of metric procedures.

‘Interpretability’ of results produced by invalid or
doubtful combinations of analytical options, and simi-
larity of results obtained in correct and incorrect ways,
may suggest that the whole argumentation in favour of
ordinal methods has very little practical relevance.
Should we worry about the incompatibility between
data type and analytical method at all? May be we
insist on mathematical rules that are too rigorous so
that the entire discussion above is just a perfectionist
commentary? We should not forget, however, that
ecology is often considered as a soft science by repre-
sentatives of other disciplines, and it is our task to modify
this attitude often accepted faint heartedly by ecologists as
well. Treating ordinal information in an ordinal way
throughout the analysis may be a small step forward.
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