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Individual-centered analysis of mapped point patterns
representing multi-species assemblages

Podani, Janos & Czaran, Tamas

Department of Plant Taxonomy and Ecology, L. Eotvds University, Ludovika tér 2, H-1083 Budapest, Hungary;
Fax +36 1 3338764, E-mail podani@ludens.elte.hu and czaran@ludens.elte hu

Abstract. On the basis of Ripley’s combined count-distance
method, Juhdsz-Nagy’s information theoretical functions and
the proposition of Williams et al. for the study of small-scale
community pattern, a new procedure is suggested for eluci-
dating multi-species point patterns based on digitized field
data. The method utilizes nested circular plots with increas-
ing radii drawn around each individual and determines
changes in floristic composition along this space series. The
information provided by detecting the species composition
around the sample plant is calculated, and its observed mean
for all individuals is compared, for each radius, to the expec-
tation under the null model, i.e. for complete spatial random-
ness of all points. The departure from randomness is illus-
trated by conventional profile diagrams and is tested for
significance based on confidence envelopes simulated by
Monte Carlo methods. One advantage of the individual-
centered sampling strategy is that the role of each species in
influencing its own neighbourhood can be analyzed sepa-
rately, providing information for the assessment of guild
structure and assembly rules in communities. The perform-
ance of the method is evaluated using artificial and simulated
point patterns.

Keywords: Compositional diversity; Information theory;
Null model; Simulated community; Spatial analysis.

Introduction

Currently, one of the most popular and mathemati-
cally best understood techniques used for the analysis of
species pattern is that of Ripley (1981), known as K-
function or second-order analysis of point patterns. The
sampling technique involves the placément of a circular
sample plot of radius ¢ around individuals and counting
the number of neighbouring individuals within the cir-
cle. Then, deviation of the observed number from ex-
pectation (referring to the null situation of complete
spatial randomness, CSR; Diggle 1983) is computed.
The calculation is repeated for a range of #-values to
examine scale dependence of the statistic, and to depict
a particular area at which the point pattern exhibits
maximum deviation from CSR towards either aggrega-
tion or segregation. Applications of Ripley’s method to

ecological problems are many; see Haase (1995) for a
recent account on the topic.

The procedure has been extended to the two-species
case (Harkness & Isham 1983). In this bivariate second-
order spatial analysis the number of individuals of spe-
cies 2 found within distance ¢ of an individual of species
1 is determined, and vice versa. The deviation of the
observed mean from random expectation (under the
assumption of CSR) is examined for various values of ¢.
The spatial scale at which the two species are maximally
associated (Cattraction’) or dissociated ('repulsion’) can
thus be identified. If the deviations remain within the
confidence envelope generated for random counterparts
of the same point pattern, the two species may be con-
sidered spatially independent for the given range of #-
values. Bivariate spatial analysis has received several
ecological applications (e.g. Cox 1987; Kenkel 1994,
Rebertus et al. 1989).

The question arises how we can extend this proce-
dure to several species. Can we identify the spatial
scale at which all or most species show maximum
deviation from random expectation? We will show
that the information-theory approach by Juhdsz-Nagy
(1976, 1993; Juhdsz-Nagy & Podani 1983) can easily
be brought into a format comparable with the above-
mentioned univariate and bivariate techniques. Such
multivariate point pattern analysis can be linked with
the debate on ‘community assembly rules’ and their
interpretation in terms of ‘niche limitation’ (e.g. Wilson
1994; Zobel et al. 1993; Bartha et al. 1995). It is clear
that a theoretically sound and well-understood meth-
odology, which is demonstrated on a range of actual
and simulated data, is required before coming to any
conclusion regarding the ecological significance and
interpretation of any spatial statistic.

Preliminary considerations

A simple multivariate approach would involve com-
putation of all possible pairwise (bivariate) deviates
and their incorporation into a single, ‘community level’




260 ‘ Podani, J. & Czdran, T.

statistic (e.g. a mean) for each value of 7. Such an
approach would meet at least three serious difficulties:
(1) There is a strong interdependence of pairwise meas-
ures: the statistic for species 1 and 2 and that for species
2 and 3 are not independent and they determine in some
way the statistic for species 1 and 3. (2) Species with high
density would dominate the analysis at the expense of the
uncommon species which may convey more ecological
information. (3) The interpretation of overall repulsion
and association of species is impossible because the
pairwise measures can easily cancel out each other. Note
that Ripley (1987, pp. 424-426) is quite sceptical about
extensions to the multi-species situation and attributes
even limited success to the bivariate analysis.

It would make more sense if a single overall measure
of the deviation from randomness could be found which
is less sensitive to rarity vs. commonness. To achieve
this, we have to compromise by giving less emphasis to
the number of individuals so important in the uni and
bivariate cases, and partly reduce the problem to the
presence/absence situation. Although this may seem to
have no direct relationship with Ripley’s ideas, many
ecologists would agree that with larger numbers of spe-
cies, a presence/absence approach will better reveal envi-
ronmental heterogeneity than absolute quantities at any
scale. This has been implicitly assumed by attempts to
explain niche limitation by the variance of the number of
species (e.g. Schluter 1984; Palmer 1987; Zobel et al.
1993; Wilson & Watkins 1994). Ripley (1987) also makes
this shift to the presence/absence case when discussing
analyses of multi-species point patterns. However, spe-
cies densities will not be overlooked in our approach:
they will be used to compute the random expectation to
which actual point patterns will be compared.

Historical background

Compositional diversity

A review of analyses of multivariate plant pattern
(Podani et al. 1993) revealed that the mast sophisticated
approach to date is that of Juhdsz-Nagy (1976). He
applied a family of information theoretical functions to
a series of data matrices, each summarizing presence/
absence scores of species in a set of sample plots of a
given size. The most interesting function is Shannon’s
entropy measure, used in a non-conventional way. Con-
trary to the usual diversity computations based on the
empirical frequency distribution of species, Shannon’s
entropy is applied to the frequency distribution of spe-
cies combinations (florulas) thus measuring the so-called
compositional (or florula) diversity (Juhdsz-Nagy &
Podani 1983; Juhdsz-Nagy 1993) of the community.

This diversity measure is strongly scale-dependent and
shows a peaked effect when displayed against plot size.
The area pertaining to its maximum value reflects the
scale point at which the community reaches its highest
variation, thus considered optimal for community char-
acterization. Changes of this maximum area over time
have been used, for example, to evaluate different as-
pects of secondary succession in abandoned fields
(Juhdsz-Nagy & Podani 1983) and of revegetation proc-
esses on dumps of open strip mines (Bartha 1992).

Pooled entropy

In a sampling experiment in rain forests Williams et
al. (1969) used the ‘information content’ (e.g. Sneath &
Sokal 1973), a measure included in Juhdsz-Nagy’s fam-
ily of functions. This function is the pooled entropy of
the species, i.e. the arithmetic sum of Shannon’s entro-
pies calculated separately for each species based on
their presence and absence in sampling units. Williams
et al. (1969) used a sampling technique based on point
clumps: each plant, together with its v ‘multiple nearest
neighbours’ were considered as a sampling unit. The
pooled entropy was calculated for samples based on
increasing values of v. The authors found that the pooled
entropy is in fact the function of the mean distance from
the reference individuals, i.e. it is distance and, conse-
quently, area that matter rather than v. Then, Podani et
al. (1993) developed a pattern analysis technique, in
which each individual is considered as the centroid of a
circular plot with radius #, and the florula of these plots
is determined for increasing values of the radius. This is
the sampling procedure advocated in the present paper.

Species associations

Williams et al. (1969) evaluated the changes of
pooled entropy over increases of v in multiple nearest
neighbour analysis and demonstrated its peaked effect,
but they did not place the results into an appropriate
context. It was Juhdsz-Nagy who recognized that pooled
entropy — ‘local distinctiveness’ in his terminology —
equals compositional diversity when there are no asso-
ciations among the species, because the following sim-
ple relationship (for mathematical formalism, see Juhdsz-
Nagy & Podani 1983; Bartha 1992) holds:

compositional diversity =
pooled entropy — overall species associations

As mentioned above, the first two quantities have
maxima along the spatial scale, and hence overall spe-
cies associations (or ‘associatum’, sensu Juhdsz-Nagy
1976) will also have at least one maximum. With a
sampling procedure involving a series of increasing
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plots we will therefore be able to recognize the scale
point at which maximum overall (negative and posi-
tive) associations exist. Maxima for the three func-
tions are found within a relatively short range along
the spatial scale, and the size of this range as well as
the sequence of the maxima (‘characteristic order-
ing’) within that range are typical (Juhdsz-Nagy &
Podani 1983 gave examples). In actual communities,
there are always associations among species, and in
randomly simulated species assemblages some asso-
ciations, even ‘significant’ ones will inevitably emerge
(Schluter 1984). Therefore, the associatum must be
treated with caution, and hence the subsequent propo-
sition in this paper-is to base pattern analysis solely
on a quantity closely related to compositional diver-
sity and its expectation.

Variance in species number

Mathematically, compositional diversity is the joint
entropy for a 2° contingency table, where s is the
number of species in the studied region. The analysis
of such contingency tables was also mentioned by
Pielou (1972), but this had no big impact on subse-
quent pattern studies because scale dependence was
neglected. Since Juhdsz-Nagy’s work was overlooked,
the prevailing view was that the 2° contingency tables
are ‘impractical’ and ‘intractable’ (e.g. Schluter 1984),
and the ratio between observed and expected variance
of species number (the latter devised from the bino-
mial distribution) became an index of species associa-
tion (cf. Robson 1972). Although Schluter (1984)
warned that “there is no necessary correspondence
between the result of the variance test and any ecologi-
cal process”, subsequent interpretations of the vari-
ance in species number did not bother us much, in view
of the recent discussion on niche limitation. It is often
forgotten that variance in species number is subject to
scale factors as well (e.g. Palmer 1987), and should be
tested by confidence intervals (T6thmérész 1994).

A novel procedure of pattern analysis

For the elucidation of small-scale community pattern
we describe a new method, consisting of eight steps.

1. Mapping. A rectangular area is delineated in the study
site. The exact position and identity of plants are re-
corded in terms of rectangular coordinates. Clearly, the
method is limited to situations where the actual exten-
sion of plants can be considered pointwise without
much distortion. For procedures of creating such point
maps in the field, see e.g. Rohlf & Archie (1978).

2. Computerized sampling. The field data are processed
(Podani 1987) and analyzed with the FORTRAN pro-
gram DARIUS (after the rich Persian king; also a per-
mutation of ‘radius’). The program examines all plants
and determines the surrounding species composition for
each within the specified radius. Plants around which no
full circles can be drawn because of overlaps with the
boundary line are omitted.

3. Probabilities under the assumption of CSR. At this
point it becomes inevitable to introduce abbreviations
used in the text. Assume that there are s species in the
rectangular area of size A. Species i is represented by »,
individuals, so its density is 7,/ A. Let t denote the radius
of circles to be drawn around each individual. Then, if the
spatial distribution of species i is random, the zero term of
the Poisson distribution will give us the probability that a
circular plot will not contain that species, i.e.

Piy=¢€" M

where A =n, T 1> [ A, that is, the the mean number of
individuals found in an area of 7 2. Clearly, the prob-
ability of presence, i.e. the event that at least one indi-
vidual of the species appears in the plot, is 1 —p; .

4. Mean compositional information. For the multi-spe-
cies case the spatial arrangement of all species has to be
examined. This arrangement can be most simply ex-
pressed in terms of the species combinations that appear
in the sample plots. Species combinations can be de-
scribed in terms of profiles or binary vectors, denoted by
Fj, of length s in which ‘0’ in position i reflects absence,
whereas ‘1’ reflects presence of species . j runs from 1
to 25, the possible number of combinations for s species.
Given the assumption of CSR, detection of species
combination F; around an individual has a probability of

P[Ff](;) = Il;[ i) ()

where g() = p(¢) if species i is absent, and g(H=1-
py(2) if species i is present (keep in mind the big differ-
ence between two probabilities, p and P: the first refers
to species absences whereas the second reflects prob-
abilities of finding species combinations!). For exam-
ple, for s =4, F;=[0,1,1,0] and p,=[2, 4, 9, 9] the
probability P[F], is 0.2 X 0.6 X 0.1 X 0.9 = 0.0108.
Information theory defines the information gained by
learning the outcome of a particular experiment as the
negative logarithm of the probability of the event real-
ized, that is, a measurement of the ‘surprise’ that combi-
nation j was detected is

I[Ff](;) = —lnP[FJ'](t) 3
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If F, is manifested, then I[F, ], = 4.53. For a very likely
species combination, ie. F,= [1,1,0,0], however, this
information is much less, being /| [Fz](,) = 0.94, whereas
for the most unlikely combination F,=[0,0,1,1], the infor-
mation is the highest, I[F 3](,) =7.13.

This example illustrates the essence of our approach.
When we repeatedly obtain low information values, i.e.
we detect species combinations that are the most com-
mon ones under CSR, the species assemblage tends to be
close to random. Higher /-values result when less likely
species combinations prevail and some species co-occur
whereas others are segregated more often than expected.

To conclude, the mean information for all individu-
als, called the mean compositional information, is de-
fined as

N'(1)
MCl, = ,;I[Fk ](,) /N(’z) 4

where F, now refers to the species combination actually
found around the th individual and N’ , is the number
of individuals around which circles of radius ¢ can be
drawn without overlapping the boundary. This measure
will serve as a characteristic of the compositional pat-
tern of the assemblage. However, there were two delib-
erate simplifications in the above train of thought:

(a) The individual representing the centre of each sam-
ple circle should in fact be omitted from the calculations
of probabilities, i.e. the abundance of the given species
should be n, — 1. Its effect on the results is obviously
negligible for high abundances. Species represented by
a single individual must be omitted from the analysis,
however. A solution of this problem is to compute the
information for each circle by omitting the centre spe-
cies from the computations, i.e. examining the ‘sub-
combination’ for all the other s — 1 species within the
circle. An argument in favour of this is that the effect of
the pattern of the centre species is removed from the
analysis, which is not so if the centre species is looked
for again in the circle. This subcombination approach
therefore seems more attractive theoretically, although
the equations above and below become more compli-
cated. Separate MCI,, values need to be computed for
each species and then their overall average computed to
obtain MCI(t)sub" (for deatils, see App. 1). Also, it ex-
ceedingly increases computing effort, which may be
critical in determining the confidence envelopes de-
scribed below. We shall use examples later to demon-
strate the difference between the use of s and only s ~ 1
species in the calculations. The subsequent formaliza-
tion will refer to the ‘all-species’ mode, to simplify the
discussion. The computer program DARIUS may be
instructed to work in either ‘all-species’ or ‘subcom-
bination’ mode.

(b) Computing MCI(,) for a random assemblage will
provide positive values, as is clear from the above exam-
ples. Zero values result only if all probabilities equal 1,
i.e. for very large t. Thus, the mean values themselves are
meaningless without comparison to a reference basis, the
expected value under the assumption of CSR. This re-
quirement is in agreement with the uni- and bivariate
approaches, and will be considered below.

(5) Deviation of MCl,, from expectation. The expected
value of MCI, under complete spatial randomness is
given by the well-known Shannon entropy function. It
uses the probabilities of all the possible species combi-
nations that can be detected, i.e. the entropy is given by

2
E[MCI(t)] = —g;P[Fj](:) lnP[F}.](r) &)

This quantity, given the vector p, of probabilities of
species absences at radius ¢, can be calculated by an
algorithm which generates all the 2° species combina-
tions. Note that in Eq. 5 summation includes all possible
species combinations, whereas in Eq. 4 summation is
over species combinations actually found so that a par-
ticular combination may appear repeatedly. This dis-
tinction is expressed by different indexing:  referring to
actual combinations, j to all theoretical ones. This equa-
tion, although clear in its meaning, takes much time to
solve for large values of s, but there is a computationally
more efficient formula for the expectation, defined as

E[M c1 (r)] = "Zl, [pi(x) Inp,, + (1 -P,-(r)) lnpi(t)] 6)
(see also Erdei et al. 1994). Then, the formula

1%:‘) .
AMCI,, =MCl, -E[MCI )| = ) IE], /Ny +

Xz:,[l’i(:) InPi(;) + (l —pi(,))ln(l -p’,(t))] )

will give the departure of mean compositional informa-
tion from its expectation, a quantity proposed for char-

.acterizing multi-species point patterns.

AMCI ,, may be negative or positive. Most of the
examples discussed aim at facilitating the interpreta-
tion of these deviations. One would expect that nega-
tive deviations correspond to a multivariate case of
repulsion: there are fewer, and less diverse combina-
tions around the individuals than expected under ran-
domness. Positive deviation may seem to suggest ag-
gregation: more and rare species combinations appear
in the pattern. The examples will show that the inter-
pretation is not that simple, however, and will point out
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that examination of the contributions by each species
should always accompany the evaluation of overall
deviations.

6. Scale dependence of AMCI .. The history of pattern
analysis demonstrates convincingly that the direction
and magnitude of the departure from randomness is
scale-dependent. The same point map can exhibit maxi-
mum negative departure for one value of ¢, and maxi-
mum positive deviation for a different s-value. At yet
another point of scale the pattern may appear indistin-
guishable from a completely random arrangement. That
is, for a full exploration of point patterns a series of #-
values must be applied. Therefore, steps 2 - 5 are re-
peated for increasing values of ¢, and the resulting AMCI-
values are illustrated by a graph in function of .

7. Significance of AMCI .. Positive and negative depar-
tures from random may be simply due to stochastic
variation or fluctuations without real background ef-
fects. Correct interpretation of results therefore requires
simulation of a confidence envelope of the statistic for
the whole range of s-values, a common practice in uni-
and bivariate second order spatial analysis. Then, the
multi-species point pattern may be declared signifi-
cantly non-random for scale points (radii) where the
actual AMCI ,-values lie outside the envelope. The sig-
nificance level is determined by the number of AMCI ,-
values simulated. In order to create the usual 95% confi-
dence envelope, the minimum and maximum of 19
simulated values need to be found for each ¢-value (cf.
Ripley 1981; Diggle 1983). We shall show that accept-
ance of the null-hypothesis, i.e. that a curve lies within
the envelope, does not necessarily imply that absolutely
random events govern pattern formation, and therefore
species contributions must also be examined.

The simulation involves random placement of ex-
actly the same number of individuals for each species as
in the actual map. For a 95% envelope 19 such maps
have to be created and the whole analysis repeated for
each. One might argue that it is a simpler to compute
N’ ,, random species combinations based on the prob-
abilities of absences directly, without generating point
maps. However, direct computations assume an infinite
study area with infinite sample size, whereas real situa-
tions are always constrained. The circular plots are
therefore not independent in the actual point map, so
that an unusual combination is manifested several ways
in the results. Thus, if we simulate combination prob-
abilities directly, this independence disappears and a
narrower, unrealistic envelope is obtained. This was
tested by comparing several simulation results; we found
that the discrepancy increases as the radius increases,
whereas for small radii the two simulations produced

quite similar minima and maxima for the envelope. This
agrees with preliminary expectations: unusual combina-
tions have very little chance to develop for small circles.

8. Species contributions. One advantage of the indi-
vidual-centered sampling strategy is that the role of each
species in the assemblage can be evaluated. The AMCI o
values can be broken up into contributions by the sepa-
rate species which may also be plotted over 7. Species
with high negative or positive contributions are key
species regarding assembly rules in the community,
while species with the lowest contributions will be less
important. In the evaluation of such plots one should
consider that in AMCI,, the species are weighted ac-

‘cording to abundance, so the effect of a rare species with

non-random behaviour may be reduced by the others.

Examples

Artificial patterns were created by hand in order to
show the performance of the method in easily compre-
hensible (albeit less realistic) situations (cf. Ripley 1987
for the univariate case). Four maps were created, each
for six species dispersed in an area of 100 by 100
scaling units. To allow comparisons, the total number of
individuals was similar in all maps.

1. ‘Clumped’ pattern. The individuals of each spe-
cies form small point clumps which are arranged more
or less randomly within the region (Fig. 1a). These point
clumps are separated from one another.

2. ‘Regular’ pattern. Although an unrealistic situa-
tion, the regular pattern is also considered because of its
ability to demonstrate different and interesting aspects
of our method. Individuals occupy positions in a 17 by
17 grid with some noise added to avoid complete regu-
larity (max 10% of the spacing distance of 5.55 units in
random direction). Species identity of points is com-
pletely randomized (Fig. 1b).

3. ‘Mixed pattern. A strongly uneven abundance
distribution: species 1, 3 and 5 are 3 - 4 times more
common than the others and they are fairly evenly
distributed over the study region. Species 2, 4 and 6
form loose clumps with one another which are not
isolated from the common species (Fig. 1c).

4. ‘Small dense patches’ pattern. This is derived
from the previous one: species 1, 3 and 5 have similar
pattern with an even higher density. However, species 2,
4 and 6 form four, very small and dense clusters located
in space not occupied by the common species (Fig. 1d).

Then a simulated data set was used, produced by a
spatially explicit individual-based Monte-Carlo model
of multi-species plant communities (see Czdrdn & Bartha
1992). Starting from a random initial community
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Fig. 1. Artificial point patterns referred to in the text as (a) ‘clumped’, (b) ‘regular’, (c) ‘mixed’ and (d) ‘small dense patches’.
Abundance distributions and number of points: (a) 266 [25, 55, 64, 41, 39, 42]; (b) 289 [57, 48, 42, 55, 40, 47]; (c) 339 [90, 24, 89,

23, 88, 25]; (d) 383 [113, 12, 114, 16, 112, 16]

pattern, the model generates a series of point maps
representing subsequent states of the community. The
spatial positions of the individuals are specified by 2D
coordinates in an area of 60 by 60 units. Time is discrete,
one time unit representing one generation. The model
has four modules: (1) seed set, (2) dispersal, (3) seedling
and adult survival and (4) competition. We introduce
these briefly in turn — for details, see Czdrdn (1984),
Czéran & Bartha (1989) and Czéran (1993).

1. Seed set. Each individual of species i of age class z
produces f;, seeds of which a fraction g; will germinate,
so that X, g; f,, seedlings will enter the competition
phase. We set g, f;, = 3 for all 6 species in the example.
2. Dispersal. Seeds are dispersed around the parent
plant with locations drawn from a 2D Gaussian distribu-
tion. The standard deviation of the distribution is the
species-dependent dispersal parameter o,. In the simu-
lated data set, 6, = 8.0 for every species.
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Fig. 2. Change in overall deviation (a) and species contribu-
tions to the subcombination case (b) over radius for the
‘clumped’ pattern (Fig. 1a). Thin lines in (a) indicate lower
and upper limits of a Monte Carlo confidence envelope for 19
simulations in the subcombination mode. Note that the dotted
line with empty symbols in (a) is the abundance-weighted
average of the six curves in (b).

3. Survival. u,, is the probability that an individual of
species { and age z survives to age z + 1, assuming no
competition. Our species were annuals with u,, setto
0.

4. Competition. Seedlings experience the competitive
pressure of other seedlings and adult plants which
decreases their chance of surviving. The intensity of
the competitive effect of an individual depends on the
species, age and spatial proximity: a,,(d) is the prob-
ability that a seedling of species i survives the competi-
tive effect of a species j individual of age z at a distance
d. In the simulated data set, we defined the competition
functions so that intraspecific competition was strong,
but interspecific competition interactions were near to
Zero.

AMCI

Unweighted contributions to AMCI

265

-0~ SUB
25~ ALL

t

Fig. 3. Change in overall deviation (a) and species contribu-
tions to the subcombination case (b) over radius for the ‘regu-
lar’ pattern (Fig. 1b). The confidence envelope and abun-
dance-weighting as in Fig. 2.

Results

Artificial patterns

The deviation from random expectation of mean
compositional diversity is computed for all maps using
both the ‘all species’ and the ‘subcombination’ mode
(Figs. 2 - 5), whereas species contributions and 95%
confidence envelopes are computed and illustrated for
the subcombinations only.

In the case of the clumped pattern (Fig. 2a), with
small radii, i.e. in close vicinity of individuals, there is
an obvious repulsion of other species — departure from
CSR is significantly negative. For the ‘subcombination’
mode the negative peak is more pronounced, because
the results are unaffected by the centre species. The
radius of 4 units (at which the minimum of AMCI,
occurs) can be interpreted as the maximum ‘repulsive
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Fig. 4. Change in overall deviation (a) and species contributions to
the subcombination case (b) over radius for the ‘mixed’ pattern
(Fig. 1c). The confidence envelope and abundance-weighting
as in Fig. 2.

radius’ of individuals, thus reflecting average clump
size in the community. For the ‘all species’ mode the
presence of individuals of the same species as the center
species is also influential. Since the species have clumped
pattern, the deviations are relatively smaller. The figure
shows that the difference between the two modes is
diminished as the radius is increased. The pattern cannot
be distinguished from random at radius 7, but up to
radius 14 there is an increase of AMCI, units. The
maximum reflects an area at which departure of the
species composition from the random case is highest.
There is in fact a high chance for all species to be present
in the random case. Maximum deviation therefore illus-
trates that this is not the case: the centre species ‘at-
tracts’ certain species and refutes others. At this scale
point the strongest non-random species behaviour is
detected. The split up of AMCI,,,, into species contri-
butions (Fig. 2b) illustrates what we introduced on
purpose: the species are quite similar in pattern and role
in the community, that is, the overall trend of Fig. 2a
does not confound species effects.

In the case of the regular pattern (Fig. 3a), the curve

AMCI
L3

; -~ AL
° e 0 15 2 26 "o SUB

Unweighted contributions to AMCI

Fig. 5. Change in overall deviation (a) and species contribu-
tions to the subcombination case (b) over radius for the ‘small
dense patches’ pattern (Fig. 1d). The confidence envelope and
abundance-weighting as in Fig. 2.

of AMCI , is similar for both modes. At small radii there
is a strong deviation towards the negative, because there
are no neighbouring points around the individuals within
the spacing of ca. 5.55 units. (This is perhaps a better
illustration of repulsion than the previous example.)
Then, for the circle which is definitely larger than the
spacingi.e. radius 6, the overall measure becomes abruptly,
and ‘significantly’ positive, showing that the four neigh-
bouring individuals for every centre plant give more
surprising combinations than randomly expected. This
effect diminishes, however, and the deviation becomes
negative again. For radius 11, ca. 2 X the spacing, we see
another peak above the confidence envelope, which can be
interpreted similarly as the peak at t=6. After another
significant minimum, the random situation is approxi-
mated. The regular distances between consecutive minima/
maxima in the curve clearly correspond to the regularity of
point arrangement. Since the species were randomly as-
signed to the points, it is no surprise that they are similar in
their contribution to the overall trend (Fig. 3b). It is for the
same reason that for large sampling units the curve remains
within the random envelope.
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The mixed pattern case demonstrates that individual
species contributions are an integral part of our ap-
proach. The deviation for the subcombinations re-
mains negative for the whole range of radii (Fig. 4a),
with strong fluctuations and two ‘significant’ troughs
in the negative domain. Based on the previous exam-
ples we may assume that the first minimum corre-
sponds to an area of negative influence around the
individuals, whereas the second one reflects some
regularity of spatial dispersion. The ‘maximum’,
which lies within the confidence envelope would
easily be overlooked unless the species contributions
are also illustrated (Fig. 4b). This maximum is not
merely by chance, because species 2, 4 and 6 do have
a great tendency for a non-random behaviour: the
florula around them is much richer than expected,
whereas the flora around species 1, 3 and 5 is usually
poorer. These effects are almost completely con-
founded in the overall measure.

In the small dense patches example, unlike in the
previous ones, the overall curve ‘starts’ in the positive
domain (Fig. 5a), reaching a significant peak at radius
2. This suggests an aggregation of species; the split up
of the overall measure by species identifies the aggre-
gated ones (Fig. 5b). The aggregation tendency is less
influential for larger radii, so that the fairly even distri-
bution of dominant species 1, 3 and 5 becomes crucial,
detected as a regularity at radius 9. For further in-
creases of ¢ species effects are reversed (though not
significant).

Simulated series of patterns

The simulation experiment was run for 20 genera-
tions. The resulting sequence of curves for the sub-
combination mode is shown in Fig. 6. The species were
identical in all their dynamical parameters, therefore we
show only the overall curves. The most obvious ten-
dency detectable is the development of a strong positive
peak shifting from =35 to ¢=8§, which attains its highest
value at the 13th generation, and flattens out afterwards.
The small negative peak at small sampling units is the
result of the weak interspecific competition, which im-
poses a minimum spacing between neighbouring indi-
viduals. The positive peak is the result of short dispersal
distances that yield clumped species patterns and sur-
prising species combinations thereby. The shift of the
peak with time towards larger t-values may be the result
of the increase in clump size as the species spread. The
decrease of the height of the positive peak after the 13th
generation can be attributed to the fact that even with
limited dispersal the species tend to occupy the whole
plot, since neither interferes seriously with the spread of
the others.

woweNaQ

° o

Fig. 6. Temporal change of A MCI,_, curves for 20 genera-
tions in the simulated pattern development experiment.

When each species has invaded the plot completely,
no improbable species combinations appear in the sam-
pling units when ¢ is large, thus it is only the small
negative peak at small 7 that remains on the curves, and
they indicate randomness elsewhere.

Discussion

The overall measure proposed here can be used to
detect an area at which the species composition of
circular plots centred around plant individuals shows
the highest departure from a reference basis, complete
spatial randomness. The examples suggest that negative
departure largely reflects areas of repulsive influence
around the centre species, where other species are less
likely to appear. Repulsion may appear at several scales
and may be interpreted as an indication of regularity in
the multi-species spatial pattern ( Fig. 1b).

The two versions of the procedure (all-species vs
subcombination mode, i.e. whether the centre species
is included or excluded) differ most considerably at
small scales. On the positive side differences tend to
disappear, especially for large radii, and the two proce-
dures produce very similar results for the maximum
positive departure. Such departure is caused by the
dominance, or at least the increased proportion, of
unlikely species combinations. This is interpreted as
the average radius of maximum selective attraction
around individuals; because this is the scale point
where the preference of the center species for others
maximally deviates from random expectation.
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The above attempt to interpret the change of overall
or average departure from randomness is not without
problems. One of the most important conclusions drawn
from the present survey is perhaps that the single curve
condensing information for all species should always be
treated with caution. (This problem is analogous to the
‘unicornian’ property of the variance/mean ratio for
single species patterns, cf. Hurlbert 1990.) Even though
this curve falls within the confidence envelope, exami-
nation of species contributions may reveal that non-
random events are concentrated around individuals of
certain species. That is, when scale is sought at the
community level, overall measures can be misleading if
not contrasted with species-level decompositions. By the
latter we do not mean conventional univariate pattern
analyses, however, because a community pattern is not
simply a ‘sum’ of species level patterns. Instead, we
emphasize species contributions to the overall measure.
Information theory measures (Juhdsz-Nagy 1976, 1993)
for use in multi-species pattern analysis, seem to be
suitable here. Other information statistics than the en-
tropy measure used in this paper may also be considered
in a similar approach.

The most significant difference between our method
and the models developed by Juhdsz-Nagy is that empha-
sis is placed on the deviation from a null model. There-
fore, the two methods are not expected to give similar
results in most situations. — For example, the maximum
radius for florula diversity was usually 1 - 3 units smaller
than the area pertaining to its maximum deviation from
the randomly expected. There are further differences:
whereas Juhédsz-Nagy’s models can be applied to any
kind of presence/absence data, our procedure is restricted
to mapped point patterns (‘fully sampled patterns’). A
future extension towards plot data is conceivable by
incorporating permutation tests into our technique. Pub-
lished applications of Juhdsz-Nagy’s models utilize ran-
dom plots located in the field or simulated by the compu-
ter (e.g. Juhdsz-Nagy & Podani 1983; Podani 1987) or
grids and transects (e.g. Bartha & Horvith 1987). The
present technique involves complete enumeration for all
individuals, rather than random sampling, with the conse-
quence that sections of the community with high abun-
dance of individuals will be overemphasized

This fact, that the procedure applies to point patterns
only, is the most serious limitation of applicability. But,
even if plants are considered point-like in space, we know
that they have ‘real’ spatial extension (e.g. the trees in
many applications of the uni-and bivariate second order
statistics). Some studies (Rebertus et al. 1989; Szwagrzyk
1990) treat age or some ‘mass’ properties of plants (e.g.
trunk diameter) separately to avoid this problem. Such
properties can be incorporated into our technique either
by separate analyses or through a weighting procedure:

‘more important’ individuals may have a larger weight in
the computation of AMCI,, than ‘less important’ ones.

The four artificial examples, although useful, did not
exhaust even the simplest possibilities for multi-species
patterns. A survey of a wider range of artificial patterns
is needed to demonstrate the ability of our approach to
detect scales of multi-species point patterns. Also,
studies of field data are required to confirm the use of
the technique in actual vegetation studies. Further in-
vestigations on dynamical situations such as the simu-
lation case treated here, or permanent plot data series,
would be necessary to extend the method to infer
mechanisms of succession or habitat degradation from
spatio-temporal patterns. Computer simulations would
be especially useful in ‘calibrating’ the method for
dynamical studies, as the mechanisms producing a
simulated spatio-temporal pattern are known and their
effect on the pattern can be directly searched for with
the statistics. The method presented here may-also be
of interest in studies of one or two-species populations
to analyse associations of different age-, size- or other
classes of individuals.

Further future investigations will include, for exam-
ple, the problem of edge effects, considered so impor-
tant in the uni and bivariate cases. Because circles that
cut the boundary cannot be considered in the analysis,
available sample sizes decrease with increasing radius,
and the whole analysis becomes restricted to plants
located in the central area of the study region. Edge
effects are most critical, and the results are most consid-
erably biased, if the interior region is not representative
of the whole study area, i.e. the pattern is not ‘homoge-
neous’ or ‘stationary’. Toroidal edge correction does
not work, because the opposite edges of the study region
cannot be attached together (see arguments in Haase
1995, which hold even more strongly in the multi-
species case). We do not see any solution in form of
analytical "correction factors” at the moment. The only
possible approach would be to designate a buffer zone
around the study region of a width corresponding to the
largest value of ¢ to be used. In this case the assumption
of homogeneity still applies, but the number of points
analyzed remains constant for all values of ¢. Further
studies of simulated and real patterns are necessary to
evaluate the impact of edge effects and to examine
whether the more laborious buffer zone approach pro-
duces ‘superior’ results.
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App. 1. Formulae for the subcombination mode.

In the main text the formulae were derived for didactic reasons for the case when all points, regardless of the species they belong to,
are considered in computing compositional information, i.e. the all species mode. This appendix gives formulae for the subcombination
mode, that is, when individuals with the same species identity as the centre species are disregarded. Assume that the center species

is ¢, and let F}C) denote species subcombination j for the remaining s — 1 species. Its detection around an individual of species ¢ has
the probability of

s—1
] =
P[F¢ ](,) = Hqiw (A1)
i=
where g, is the same as in the main text. The information obtained by detecting this particular subcombination is

K7 =-mAF] (A2)

§
denote the number of individuals of species ¢ around which full circles of radius z can be drawn, that is ZN o)) = N :,, .

Let N,
c=1
Therefore, the mean information for all individuals is given by:
N'(r) ©
(4 ’
MCI(t)sub = kz I[Fk ] N(t) (A3)
=1 :

where F,E‘) refers to the species subcombination found around individual &, which actually belongs to species c. The expectation for
a randomly chosen individual is obtained as '

s 251
>Ny ZAF] I“P[Ff(c)](,) i[zv et 2| Piy Py + (=i nf1 - fU))”
- c=1 Jj=1 _c=1 i#c (Ad4)
E[MCI (,)sub] = N(:) - N 21)

and the deviation from the expectation will be

8

25—1
(c) c)
N(D) ; Nf(')Z;P[E' ](,)lnP[F}( ](;)
AMCl (= D ] [F,EC)]O) /N 0t 7
k=1 \ (1)

Recall that index k refers to the manifested combinations, whereas j runs over all subcombinations when species ¢ is omitted.

(AS5)




