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Abstract: This paper discusses the utility of computerized sampling methods in vegetation studies. A brief review of
published work and a presentation of new results demonstrate that computerized sampling may be beneficial in a
wide variety of research areas, including the optimization of sampling design and the recognition of the scale of

Motivation

A quantitative vegetation study may be divided into two
main stages: sampling and data analysis. In the second
stage, all ecologists seem to agree that computers have
become indispensable tools (see the ever-increasing bulk of
literature on the development and application of computer
techniques in vegetation science). But what of the first
step? Is it possible that computers could be of some help in
the sampling stage as well? Is there a real need for com-
puters at the very beginning of a vegetation survey? Is it at
all conceivable that computerized sampling will ever be as
routinely used as multivariate analytical methods, or will it
be confined to some isolated fields of ecology? I hope that
this brief review of published work and new results will
bring us closer to the answers to these questions. However,
before turning to the discussion of the possible utility of
computerized sampling, it seems worthwhile to deal with
the principles.

Principles of computerized sampling
A definition

It is appropriate at this stage to define the term «com-
puterized sampling» in order to avoid any possible misun-
derstanding. The adjective «computerized» is meant to be
more restrictive than «computer assisted». «Assistance»
allows for the case, for example, when sample plots are laid
down in the field according to random coordinates
generated by a computer. This definition is not of concern
here. Furthermore, sampled randomization tests and other
Monte Carlo-type experiments that simulate data directly
(e.g., Swan 1970, Ek 1971, Gauch and Whittaker 1972,
1976, Ricklefs and Lau 1980, Carpenter and Chaney
1983, Lagonegro 1984, Prentice and Werger 1985, among
many others) are also beyond the scope of this paper. I am
concerned here with procedures which simulate field sam-
pling. Thus, computerized sampling is defined as a com-
pletely automated process for taking simulated units from
an appropriate sampling universe, which is housed within
the memory of the computer. The simulation is completed
with the recording and output of data requested.

Types of sampling universes

Depending on the level of vegetation description, two
different types of sampling universe are conceivable. At the
level of the population of one or more species, the dis-
tinguishability of individuals and species on the map will be
important. This is not the case with community level maps,
which express vegetation structure in terms of syntax-
onomic units. In this paper, the first type, called pre-analy-
tical, will be of primary concern. Since the second type is
conditioned upon some analytical steps by which the syn-
taxonomic units are created, they are rarely if ever sam-
pled.

The preparation of a sampling universe
Sor computerized sampling

A fundamental question is the manner by which the
sampling universe is stored in the computer core. Szdcs
(1979) described a procedure, the photocomputational
method, which illustrates the general idea. The first step is
fixation; the real, primary picture of the vegetation is map-
ped using a camera or some other recording device. This
map is subjected to transformation to convert it into a sim-
plified geometric image that will be ready for digitalization,
a process for numerically coding the sampling universe.
The resulting set of «data» can then be used as input to a
sampling simulator.

Types of transformation

The most crucial of the above steps is transformation,
since it is at this point that the decision of how the actual
vegetation map will simplify to a form suitable to
digitalization is made. The method of transformation
should be selected by considering some or all of the
following: 1) the required level of resolution, 2) the size of
individual plants relative to the size of the study area and
plots, 3) the shape of plants, 4) the type of data to be
recorded, and 5) the objective of the study.

In the simplest and commonest case, each individual
plant is represented by a point whose position is described



10

using a Cartesian co-ordinate system. The two-
dimensional map obtained in this way is applicable for
recording abundance and presence/absence data but can-
not be used in estimating cover. Such maps are efficient in
the study of the spatial pattern of trees (e.g., Diggle 1979,
Bonnicksen and Stone 1981), since no additional informa-
tion is conveyed on the spatial distribution of individuals
by a more complex map also showing, say, the vertical
projection of crowns. However, the representation of
grasslands and similar vegetation types is much less ac-
curate using point-scatter maps. One alternative, the
representation of plant patches by dense point clusters, ap-
pears to be suboptimal. As an example, Podani (1984b)
found that the simplification of a cover map into a scat-
tergram, by replacing patches with point clusters, led to the
underestimation of resemblance and information theory
functions at small plot size, though this effect diminished
as plot size increased.

Regular, two-dimensional figures (usually circles) are
also used to approximate the vertical projection of plant
parts (e.g., basal area of trees, Arvanitis and O’Regan
1967, Sukwong et al. 1971). In such cases, the parameters
required to describe the shape and size of individuals or
patches render the processes of digitalization and sampling
unit simulation much more difficult.

Transformation into irregular figures would require
even greater sophistication and much more computer
memory. Two possibilities for simplification deserve men-
tioning: the representation of vegetation as a mosaic of
several phases (sensu Matérn 1979) or as small-celled grid
images. To my knowledge, such maps have not yet been
analyzed using computerized sampling. This is likely at-
tributable to the difficulties associated with coding and
programming.

Simulation of the sampling universe

The problems of fixation and transformation are
avoided using computer-generated vegetation patterns. The
simulation of vegetation structure allows the researcher to
govern the pattern formation processes such that many
properties of the resulting maps are known (Szdcs 1979).
Reference is made here to a few works which may be con-
sulted for Monte Carlo methods of pattern generation.
Ripley (1979, 1981), Clff and Ord (1981) and Diggle
(1979, 1983) described models for stochastic point
processes applicable to the generation of various types of
spatial distribution of a single species. An algorithm to
simulate random mosaics (Voronoi polygons or Dirichlet
tessellations) of two or more species is presented in Green
and Sibson (1978, see also Matérn 1979). Czaran (1984)
suggested a procedure for the simulation of a point pattern
of several species by considering competition as well as
seed dispersal.

Simulation of the sampling procedure

Simulation of the sampling procedure yields a sample
which is a subset of the sampling universe. Practically all
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sampling methods can be simulated, but the solution for
any part of the universe, whether or not to include in a
sampling unit, will not be equally easy for all plot shapes.
For example, for circular plots it is sufficient to find the in-
dividuals that fall from the centre of the plot not farther
than the specified radius. The search needs more applica-
tion of co-ordinate geometry for randomly-oriented rec-
tangles and even more calculations are required for ellip-
tical sampling units. In any case, the selection or location
of sampling units must involve a chance component.

As in the field, the user of a sampling simulator must
specify several sampling characteristics. These include:

1) The type of sampling unit (random plant, random
point, plot, line, etc.) and the type of data to be recorded
(distance, abundance, presence/absence, cover, etc.);

2) The number of sampling units (sample size);

3) The arrangement of sampling units (e.g., systematic,
random, stratified random).

If plots are used, three more decisions must be made
regarding;

4) the plot shape;

5) the plot size; and

6) the orientation of anizodiametric plots.

Some computer programs designed for sampling simula-
tion are discussed in the Appendix.

Problems associated with computerized sampling

In addition to the problems of transformation, com-
puterized plot sampling leads to two other difficulties that
may introduce a bias into the results. The first problem
revolves around the fact that usually no overlap is allowed
between sample plots and the borders of the study area.
Consequently, in the case of randomly-arranged plots,
plants close to the border will have a smaller chance of be-
ing included in the sample than others; this is termed the
«edge effect» (e.g., O’Regan and Palley 1965, Wensel 1975,
Ripley 1981). The edge effect is illustrated in Figure 1a, in
which square units located parallel to the edge are used to
simplify the illustration. Let s denote the side length of
quadrats, x;the distance of point i from the boundary, and
p;the probability that point i falls within a randomly
located quadrat. For any point for which x;>s, the p,
probability will be proportional to s2. However, p,will be
lower for points with x,<s, since all quadrats whose cen-
troid is closer to the boundary than s/2 would cross it and
would be deleted from the sample. In these cases, p;is
proportional to s-x; that is, sampling intensity will decrease
continuously towards the edge. This seems a serious disad-
vantage, though Podani (1984b) has suggested that edge
effect should always be interpreted in accordance with the
objective of the survey. Whenever the objective is the es-
timation of population variables and textural variables
(e.g., species/individual diversity), edge effect should be
corrected for to avoid bias. This may be achieved using
Wensel’s (1975) method (a case of the toroidal edge
correction of Ripley 1981), which complements incomplete
sampling units by fragments taken from the opposite edge
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of the study area (Fig. 1b). This implies that points on the
opposite edge can be pooled. In this sense, the correction is
absolutely meaningless if structural characteristics of
species assemblages (e.g., interspecific associations, resem-
blance, supraindividual diversity) and their dependence on
sampling are of interest. In these cases, the problem of
edge effect applies equally to simulated and field sampling,
and therefore needs no correction (cf. Podani 1984b). An
important consequence of the edge effect problem is that
conclusions drawn from a simulated sample do not apply
directly to the whole vegetation from which the map was
taken. However, if the objective is the analysis of spatial
pattern in a population, edge effects need to be corrected
using special formulae (e.g., Diggle 1979) or allowing a
«guard» area around the sampled site (Ripley 1981,
Galiano 1982).

The second question involves deciding whether or not to
permit the overlapping of random plots for a given sample.
Again, the answer is goal-dependent. If population
variables are to be estimated, sampling with overlapping
plots appears to be analogous to the random sampling of
individual objects with replacement (Cochran 1977, p. 29).
However, it is unclear if the same statistics directly apply
to samples derived from plots. If the objective of the study
is the analysis of vegetation structure, the overlap of plots
produces no artifacts in the estimation of structural
variables, as shown by Podani (1984b). Indeed, overlap
among plots must be allowed in such cases, in order to
capture as many species combinations as possible (see
below).

Applications of computerized sampling

Simulation of sampling has served several purposes in
ecology and related fields. Though these applications could
be categorized in many different ways, I consider the un-
derlying main objective of the study as the most important.
Accordingly, the primary distinction here will be made be-
tween surveys aimed at the estimation of population
variables and textural variables, and those analyzing
structural properties of a single population (autophenetic
pattern) or an assemblage of population (synphenetic pat-
tern, sensu Juhasz-Nagy 1984 p. 401).

Estimation

Having a full representation of the sampling universe in
computer memory, the surveyor may readily determine the
«true» values of population parameters and textural
variables by complete enumeration. This knowledge makes
possible comparative studies on the performance of dif-
ferent sampling techniques and statistical estimators.

Population variables

The history of estimation-oriented computerized sampl-
ing goes back to the early 1960’s. To my knowledge,
Palley and O’Regan (1961) first used a sampling simulator
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Fig. 1. a. Edge effect. Shaded areas are proportional to the

probability that an individual in the plot center will be sampled
(see text); b. Wensel’s correction for edge effect.

program. They compared the precision of tree density,
basal area and timber volume estimates obtained by two
different plot sampling methods (Bitterlich point and line
sampling) for various types of forests. In another paper
(O’Regan and Palley 1965), the relationship between plot
size and the variances of the above mentioned measure-
ments was studied. Considering efficiency, plot sampling
was found to be inferior to Bitterlich sampling. Arvanitis
and O’Regan (1967) extended the study of optimality
criteria to sample size as well as to the cost of measure-
ments. With these considerations included, sampling by
plots was found to perform better for all variables except
basal area. These papers clearly showed how useful com-
puterized sampling may be for selecting optimal sampling
strategies in applied research. Predicting a promising
future of this strategy, the authors went on to state that
«Increase in storage capacity [of computers] and develop-
ment of more accurate, rapid, and economical methods of
constructing stem maps of large forests (by means of aerial
photographs and electronic devices) would increase the ef-
ficiency of the computerized approach and would help to
solve the difficult sampling problems...».

In forest science, computerized sampling has continued
to play an important role. Wensel and John (1969) and
Wensel (1975) were concerned with edge effect corrections
in simulated sampling. Sukwong et al. (1971) returned to
the old issue of comparing the precision of estimates from
variable and fixed-radius plot samplig. Artificial popula-
tions with random and aggregated spatial pattern were
analyzed. Their approach differed from the former one in
that, instead of subjecting a whole map to sampling simula-
tion, only fragments of forest around the centre of each
plot were simulated to save computer time. O’Regan et al.
(1973) determined the optimum number and size of ran-
dom plots of estimating density at a fixed cost.

Pickford and Hazard (1978) described a program to
simulate line intersect sampling. The effect of the number
and length of lines on the precision of estimates of logging
residue volume was analyzed.

Whenever the density of populations is examined using
plant-to-plant or point-to-plant distances, the objectives of
estimation and pattern analysis coincide. In such cases,
density estimation is accompanied with inferences on the
spatial pattern (cf. Diggle 1979, p. 119). For example,
Batcheler (1973) derived empirical density estimators,
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which incorporate an index of non-randomness, from
simulated populations. Lamacraft ef al. (1983) compared
four distance-based density estimators, two sampling
strategies, and actual and random plant patterns using
simulated sampling. A general treatment of the distance-
based density estimators is given by Warren and Batcheler
(1979), which also includes many other references to
simulation studies.

Textural variables

Sampling techniques and estimators for textural
variables (e.g., species number, species/individual diver-
sity) for describing species assemblages may also be ex-
amined using simulated sampling. However, fully-
automated comparisons based on maps appear to be lack-
ing. Nevertheless, there are a few relevant papers which are
worth mentioning here. Nosek (1976) used semi-
automated sampling to analyze the performance of sampl-
ing methods in diversity studies. Kobayashi (1981) and
Heltshe and Forrester (1985) reported on the comparison
of diversity estimates using Monte Carlo data simulation.
Finally, Hahn (1982) explored some possibilities for the
correction of edge effects in diversity estimation; his
suggestions deserve more attention in future simulation
work.

Autophenetic pattern

Departures from randomness, and the scale of pattern
are the primary concern when pattern analysis is perform-
ed at the population level. Clearly, a map showing the loca-
tions of all individuals provides more information
regarding spatial pattern than field studies based on either
quadrat or plotless sampling (cf. Diggle 1979). Advantages
of using mapped patterns and simulated sampling include:

1) the ability to apply more sophisticated analytical
techniques, e.g., those based on all plant-to-plant distances
within the study region (an example is in Galiano 1982);

2) the possibility of more exhaustive investigations of
the same region through analysis using different techni-
ques. This job could not be done in the field easily and the
trampling of herbaceous plants is also avoided in this way;

3) the ability to assess the performance of various pat-
tern analysis techniques. Goodall and West (1979) provide
an example; they compared several indices of non-
randomness by means of computerized sampling in ar-
tificial populations.

In many recent statistical investigations of mapped data,
computerized sampling is a routinely used technique of
data collection, without explicit references to it in the
methodological part of papers. This is certainly the case
for plotless techniques, in which the simulation of sampling
consists merely of placing random points on the plane or of
selecting random plants from a list.

The idea of using computerized sampling to study
spatial pattern was first proposed in the early 1970’.
Goodall and West (1972) outlined a method for pattern
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analysis based on low-level aerial photographs, whereas La
France (1972) investigated the effect of plot shape on the
variance/mean ratio along artificial gradients. Since then,
mapped point patterns of forest trees have been of primary
concern in many statistical studies. Diggle (1979) present-
ed a detailed illustrative study of several actual maps and
showed how powerful the nearest-neighbor techniques are
if mapped patterns are analyzed. He gives many references
for further reading. Bonnicksen and Stone (1981)
simulated five different techniques, including nearest
neighbor and quadrat methods, for the pattern analysis of
tree classes (so the statistical population analyzed was in
fact composed of several species). Recently, Franklin et al.

(1985) have applied computer simulated sampling to the
spectral analysis of digitalized distributional data for trees.

I am not aware of any report on the computerized sam-
pling study of patterns other than point scatters. Perhaps
Matérn’s (1979) paper may give the necessary starting in-
formation towards this objective.

Synphenetic pattern

Studies of the spatial structure of communities, no mat-
ter what the level of resolution, recognize pattern of the
synphenetic type. Classification and ordination of vegeta-
tion are obvious cases in point. Considering the wide in-
terest in multivariate techniques, a relative imbalance will
strike the eye of the reader of the forthcoming paragraphs.
Only four published works are available in which the com-
puter is used as exhaustively as possible for evaluating the
dependence of structural studies on the underlying pattern
and sampling.

Structural variables

Structural variables express specific information on
vegetation pattern as a single value. An essential difference
between textural and structural variables is the scale
dependence of the latter, implying that the optimization of
textural and structural variable estimates requires different
solution. Specifically, whereas plot-size increases always
result in more precise estimates of species diversity, etc.,
the same cannot be said of structural variables (cf. Podani
1984a).

Resemblance (Orldci 1972), is an important structural
variable upon which most multivariate analyses are based.
Its dependence on plot size, although repeatedly
emphasized by some authors (e.g., Greig-Smith 1983),
remains a neglected topic. A first step towards a better un-
derstanding of this problem may be to determine the
expected resemblance of two non-overlapping random
plots. This can be estimated by simulating many pairs of
plots using mapped data. Podani (1984b) presented results
of sampling experiments concerning the influence of plot
size on four resemblance coefficients, in two mapped and
two simulated communities. Two indices, which exclude
the number of «negative» matches from the numerator,
showed a monotonic increase with increasing plot size.
Euclidean distance and the related simple matching coef-
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‘ﬁcient exhibited a peaked effect, indicating a plot size at
which the sample shows maximum heterogeneity
(maximum area in terms of expected distance). The effect
of pattern was manifested in that the maximum area was
always smaller in the random versions.

Computerized sampling may also be used to evaluate
the properties of resemblance coefficients. For example,
Lim and Khoo (1985) investigated the effect of sample size
and species number on estimates of Gower’s similarity
coefficient. Test communities with varying species abun-
dance relations were generated and subsequently sampled
using simulated quadrats. The between-community
similarity coefficients obtained from the sample were com-
pared with their corresponding expectations. The estimates
were biased when the expected similarity was either high or
low. However, since plot size effects were not investigated,
the conclusions drawn cannot be considered definitive.

A family of information theory functions, related to
Shannon’s entropy, was suggested by Juhasz-Nagy (1976,
1984) and Juhasz-Nagy and Podani (1983) for analyzing
the scale of synphenetic pattern in the presence/absence
case. Characterisic areas were defined in terms of the max-
ima and minima of these functions (florula diversity, local
distinctiveness, associatum). In the simulated sampling
study referred to above (Podani 1984b), these charac-
teristic areas were identified and compared to the max-
imum area of expected distance. There was good agree-
ment between the results of the two different approaches
regarding maximum areas and departures from ran-
domness. Estimation problems were also considered by
analyzing the effect of plot shape, arrangement and sample
size.

The relationship between sampling and one of the infor-
mation theory characteristic functions, namely local dis-
tinctiveness, was examined by Williams ef al. (1969). They
suggested a variant, based on mapped tree localizations, of
multiple nearest neighbor sampling for the elucidation of
small-scale synphenetic pattern of forests. Each tree,
together with its m nearest neighbors, is considered as a
sampling unit. The local distinctiveness (or «information
content» in the terminology of the authors) is calculated for
the set of all sampling units. As it turned out, the change of
local distinctiveness over m (clump size) also exhibited a
peaked effect and was the function of the mean distance
from the reference individuals.

Ordination

The effect of sampling and community pattern on or-
dinations was examined by La France (1972), using ar-
tificial communities and partly-automated sampling. The
recognition of an underlying one-dimensional gradient was
found to be highly affected by plot shape and orientation —
perhaps, not a too surprising result. Small-scale pattern im-
posed on the overall pattern led to a more distinct group
structure in the ordinations. However, the approach of La
France, which examines the relationships between sampl-
ing, plant pattern and the results of multivariate analysis,
has subsequently received very little attention.
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Classification

Computerized sampling and pattern simulation have
been almost completely neglected in classificatory studies.
This is all the more surprising when one considers that
cluster analysis is used as a standard tool for pattern
recognition. The usefulness of the computerized sampling
approach is demonstrated by Williams ef al. (1969). The
point clump sets (described above under Structural
variables) at various values of m, as well as contagious
quadrats of different sizes were input to cluster analysis.
The resulting groups at the four-cluster level were allocated
onto a field map in order to evaluate their ecological
relevance and to illustrate the dependence of classification
on the sampling procedure used. The resuits suggested the
existence of a clear pattern within the study area, with the
most clear-cut separation of groups at m=12. This was the
clump size at which the local distinctiveness was max-
imum, a conclusion which apparently escaped the attention
of the authors. Some resemblance between the classifica-
tions of larger plots and clumps of m=12 is also obvious,
indicating that a search for maximum local distinctiveness
may aid in finding the scale of synphenetic pattern.

Two new examples

The previous section showed earlier applications of
computerized methods for evaluating the effect of sampling
upon the results of multivariate analysis. That the
possibilities are by no means exhausted will be
demonstrated here using two examples. The first examines
the effect of sample size upon alternative classifications of
species, whereas the second is concerned with the recogni-
tion of scale in simulated communities.

Sample size dependence of interspecific relationships

In general, an increase of sample size results in greater
precision of estimates of the true population values of the
sampling universe. This is also true of some structural
variables (e.g., resemblance), for the following reasons.
Assume that interspecific correlation or expected resem-
blance of plots is to be calculated for a given study region
based on presence/absence data at a fixed plot size. Since
the sampling universe is continuous in space, an infinite
number of plots could be located within the area. However,
the number of possible florulas (species combinations
within plots) has an upper bound, which is determined by
community pattern (Juhasz-Nagy and Podani 1983). The
probability of selecting a given florula is proportional to
the area within which any plot would capture the same
species combination. The size of such areas determines in a
complex way the expected values of resemblance. In-
creases of sample size will lead to an increased representa-
tion of possible florulas, and their relative frequencies will
reflect more and more closely their true relative propor-
tions. This in turn implies a greater precision of resem-
blance structures. This situation would also hold for the
case when abundance or cover are estimated.
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Material and methods

Given the difficulty of examining the above problem us-
ing field data, it is apparent that the effect of sample size on
resemblance and subsequent classifications may be best
demonstrated with a computerized approach. A map
showing the point pattern of the most abundant six species
in a perennial sand steppe community (Kiskunsag
National Park, Hungary) was used for this purpose. The
2.4 m? area was mapped by Z. Szbcs using his photocom-
putational technique (Szécs 1979). The study region is
fairly homogeneous, with most species showing an
aggregated spatial distribution.

The study region was sampled by the computer
program ELSAM (see Appendix). A total of 2400 circular
plots was taken. The plot size was selected so as to yield
the maximum of florula diversity within the region. The
resemblance matrix of the six species was calculated and
cluster analysis performed for each of the following sample
sizes: 5, 10, 35, 75, 150, 200, 300, 600, 1200 and 2400.
The combinations of clustering algorithms and resem-
blance coefficients were as follows:

a) simple matching coefficient — furthest neighbor
sorting;

b) Euclidean distance for binary data — incremental
sum of squares agglomeration (SSA);

¢) PHI coefficient — nearest neighbor sorting;

d) Euclidean distance using counts — SSA;

¢) Euclidean distance using logtransformed counts —
SSA; and

f) Euclidean distance using counts standardized by
range — SSA.

The resemblance measures and clustering algorithms are
described in Orloci (1978). The computations were perfor-
med at the University of Western Ontario, London, using
the cluster analysis program NCLAS (Podani 1984c).

Results

The six series of ten dendrograms are not illustrated
here. Instead, the topology of the hierarchies that did not
change after a certain sample size was reached (stable
results) are presented (Fig. 2). This limit varied con-
siderably with the data type and the standardization
technique used. The results suggest that untransformed
counts require the smallest sample size to yield an in-
variant classification (Fig. 2d). For presence/absence data,
a larger sample size was necessary to obtain an invariant
classification. At sample size 200, identical results were
produced by methods a and b. The logarithmic transfor-
mation of counts gave a close approximation to the binary
case and resulted in similar classification at the same num-
ber of plots (Fig. 2e). The PHI coefficient produced a quite
different result, and a substantially larger sample size was
necessary. This coefficient has been most widely used in
measuring interspecific correlation, and the present results
demonstrate that this choice is probably inappropriate
unless a fairly large number of plots are enumerated. The
classification based on counts standardized by range did
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not reach the invariance state even at a sample size of
2400.

These results show that the «optimum» sample size (l.e.,
the smallest number of plots beyond which the classifica-
tion is unchanged) is strongly dependent upon the choice of
the data analytical technique. A more exhaustive treat-
ment, including the simulation of the point pattern, is
clearly required for a deep exploration of this problem.

a m=200 b m=200 Cc m=600

135246 561324

Al

4 65231

d m=75 e m=200

olls

4 6 2351

Fig. 2. The effect of sample size on the hierarchical classification
of six species based on different measures of resemblance (see
text). m is the sample size beyond which the topology did not
change. m is not shown for dendrogram f since no stable result
was obtained.

Community classification and plot size

This section examines the problem of scale dependence
of community classification and its analysis. Although the
literature abounds with proposals regarding the selection of
plot size and sampling design for community classification,
the problem remains to be investigated thoroughly. The
complexity of the problem requires the aid of computer
systems. Indeed, a completely computerized approach in
which all steps, starting from community simulation and
ending with cluster analysis, has much to be recommended
since only in this way can the user control the factors
which may seriously influence the results. These factors in-
clude:

A. Community properties

Number of communities within the region
Number of species

Spatial distribution of individuals

Species density

Distribution of abundances

Distinctness of communities regarding factors A.2-5
Boundary type (sharp or fuzzy)

Nk w e

B. Sampling characteristics
1. Plot size
2. Plot shape
3. Arrangement of plots
4. Sample size
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C. Decisions concerning data analysis
1. Data type
2. Data standardization
3. Resemblance coefficient
4. Structural variables
5. Clustering algorithm

This list is far from complete, but does indicate the com-
plexity of the problem and the enormous amount of com-
putation required before definitive conclusions regarding,
say, the relationships between autophenetic and syn-
phenetic pattern can be made. In this paper, a deliberately
simple case is presented to illustrate the computational
strategy. The influence of plot size on the recognition of
two simulated community types is demonstrated, and the
potential utility of some structural variables in plot size op-
timization is examined.

Materials and methods

Two artificial «communities» separated by a sharp
boundary line were simulated within a study region of 10
by 24 units in size: community A on the left half, com-
munity B on the right. The number of species and the dis-
tribution of individuals were selected so as to yield a high
overall similarity of the two communities. Twenty-eight of
the species were common to both communities, being ran-
domly dispersed over the entire study region. Four dif-
ferential species were responsible for community dif-
ferences, with two restricted to community A, the other
two to community B; all were randomly dispersed. Species
abundances ranged from 1-524 and approximated a
lognormal distribution. The number of individuals of the
differential species was 32, 64, 32 and 64, respectively; the
total number of individuals was 2538.

Two sampling strategies were simulated. Sets of random
circular plots, each with a sample size of 150, were taken
using program ELSAM (see Appendix). The increasing
series of plot radii was as follows: 0.2, 0.4, 0.5, 0.7, 0.8,
0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 2.0 and 2.5 units. To
avoid the overlap of plots allowed by ELSAM, systematic
sampling with square units was also performed using
program SAMPROC (see Appendix), at the following
quadrat sizes: 0.12, 0.64, 1.0, 1.8, 3.0, 5.0, 6.7, 8.7, 11.0
and 20.0 squared units. Because of the limited size of the
study area, sample size decreased from 70 to 10 as plot
size increased.

Structural variables, whose change will be evaluated in
comparison with classification results, were calculated us-
ing the SYN-TAX II program package (Podani 1984c).
The information theory functions mentioned above, plus
dissociatum (Juhasz-Nagy 1984), were computed using
program INPRO2. To eliminate sample size effects, only
the samples taken by ELSAM were used. Expected resem-
blance estimates were obtained by program EXPRES (see
Appendix) for the same series of plot sizes.

In order to illustrate the effects of the existence of large-
scale heterogeneity (i.e., distinct communities), the struc-
tural variables were also estimated from samples restricted
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to the separate community types. Sample sizes and plot
sizes were identical with those used in the sampling of the
entire study region.

The sample plots randomized over the whole region
were classified using program NCLAS for each combina-
tion of plot size and arrangement. The clustering algorithm
was sum of squares agglomeration based on a Euclidean
distance matrix of presence/absence data.

Results

The dependence of structural variables on plot size, and
the differences between the one and two-community cases,
are illustrated in Figure 3. Arrows point to the maxima (or
minima) of functions. The curves for community B are
omitted since they were very similar to those found for
community A.

The information theory functions (Fig. 3a) have no dis-
tinct extreme values; there are maximum or minimum in-
tervals rather than definite peaks and deep throughs, par-
ticularly for florula diversity and dissociatum. Comparison
with earlier findings suggests that this may be due to the
presence of rare species (Podani 1984b). The divergence of
results obtained from community A and from the entire
region is apparent for local distinctiveness and associatum.
In the single-community case, maxima are shifted to a
smaller plot size and absolute values are lower, indicating
that these functions are sensitive to the existence of large-
scale heterogeneity. This sensitivity shows that local dis-
tinctiveness and associatum may be of greater utility in op-
timizing plot size prior to classification.

Expected values of the Sorensen and Russell-Rao in-
dices increase monotonically with plot size (Fig. 3b). This
inherent behavior is apparently little affected by actual
plant pattern, rendering these functions inapplicable for
recognizing the scale of synphenetic pattern (Podani
1984b). By contrast, the expectations for binary Euclidean
distance and the simple matching index reach a maximum
and a minimum respectively, indicating a plot size at which
the sample is expected to be maximally heterogeneous.
However, these extremes are not striking, since a wide
range of plot sizes gave very similar estimate. As with local
distinctiveness and associatum, the maximum area of ex-
pected distance is smaller for the one-community case.

The effect of plot size upon classifications is best il-
lustrated by the allocation of results onto the map at the
two-group level (Figs 4-5). In this way, we can see how the
recognition of the two communities is affected by plot size.
At small plot sizes, a mosaic structure is indicated. As plot
size increases, the distinction of the two communities
becomes more apparent. Optimal recognition of the two
communities occurs at a plot size of 5.3 sq. units for ran-
dom circles and at quadrat size of 11 sq. units for
systematic sampling. Above this level, the plots begin to
overlap the boundary line, obscuring recognition of the two
communities. A plot size range 5.0-12.5 gives fairly «ac-
ceptable» results for both random and systematic sampl-
ing. However, there is a difference in the plot size which
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Fig. 3. The change of structural variables over plot size in the en-
tire study area (solid lines), and in community A (dotted lines). a.
Information theory functions: 1: local distinctiveness, a:
associatum, f: florula diversity, d: dissociatum. b. Expected
resemblance: m: simple matching coefficient, e: normalized

Euclidean distance, s: Sorensens index, r: Russell-Rao index.

gave the «best» classification. Plot size is smaller for the
random design, since the overlap among plots facilitates
«chaining» in the course of the clustering process, so that
closely-positioned plots will tend to aggregate. In
systematic sampling, the plots falling on the boundary line
confuse the results at most plot sizes used.

Finally, the comparison of the two pattern recognition
processes, (i.e., the series of structural variables and the
series of allocated classifications) deserves attention. The
principal question is whether structural variables can be
used for optimizing plot size in classification studies. Since
systematic sampling yielded very small sample sizes at
large plot sizes, this comparison can be made for the ran:
domly arranged plots only.

Comparison of Figures 3 and 4 reveals that the «op-
timumby plot size is very close to the maximum area of local
distinctiveness, and similar to that of associatum. This
suggests that local distinctiveness, and perhaps
associatum, may give a good approximation to the plot
size for which the recognition of synphenetic pattern is op-
timal (see also the results of Williams et al. 1969, which
were also obtained from overlapping units). At first sight,
expected distance would appear less appropriate for this
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purpose; the peak is not so striking and the curve is fairly
flattened within a considerable range of plot sizes. It is
noted, however, that within this range, the recognition of
communities was not seriously influenced by plot size. A
practical implication of it is that after finding this range,
other criteria (e.g., cost) may dictate the selection of a par-
ticular plot size to be subsequently used.

Concluding remarks

This paper has reviewed and discussed the potential
utility of computer simulated sampling in vegetation
science. It is apparent from the many examples presented
that great benefit may be derived from such an approach
for the study of fundamental theoretical problems in
vegetation sampling. Simulated sampling should receive
more attention in the following research areas:

1) comparison of different sampling strategies;

2) the optimization of sampling design in accordance with
the objective of the survey;

3) the joint application of a number of pattern analysis
methods to the same segment of actual or artificial com-
munities;

4) simultaneous analysis of principal properties of vegeta-
tion (population parameters, diversity, resemblance, etc.) in
order to find the link between research areas which until
now have been separated by wide methodological gaps;
and

5) the study of the performance of pattern analysis
methods, with emphasis on the relative impact of arbitrary
decisions on the results.

For many, computerized sampling of simulated com-

12.5 19.6

Fig. 4. The effect of plot size on the recognition of synphenetic
pattern. The samples consist of random circles of area shown at
top left of each map.
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munities may seem to be the ultimate departure from real
world, an «art for art’s sake» approach. One should not
forget, however, that just as in many other — and possibly
more exact — fields of science, the simplifications inherent
in simulation represent inevitable initial steps towards the
understanding of the complexity of nature.
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Fig. 5. The effect of plot size on the recognition of synphenetic
pattern. Each sample consist of systematically arranged
quadrats of area shown at top left of each map.
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APPENDIX
Computer programs for simulated sampling

The following programs, which are available under the
FORTRAN package SYN-TAX II (Podani 1984c), are
applicable to the study of point patterns within a rec-
tangular study region:

ELSAM: random plots of circular, elliptical or rectangular shape
with random or uniform orientation are taken. The output is
a species by plots matrix of counts.

SAMPROC: systematic and restricted random sampling by cir-
cular or rectangular plots are simulated.

EXPRES: random pairs of plots are simulated to calculate the
expectation of six resemblance coefficients.

The entire program package may be ordered from:
SISSAD, Viale Campi Elisi 62, Trieste, Italy.

Programs mentioned in the recent literature include:

INTRSCT: line intersect sampling simulator program (Pickford
and Hazard 1978). The sampling universe is described by in-
dividual piece dimensions and spatial locations.

An unnamed FORTRAN program was written by Galiano
(1982) for calculating plant-to-all-plant distances based on
plant co-ordinates. The output includes a histogram of
distances.

SAMPLE: An interactive FORTRAN program by Stauffer and
Nigh (1981). It takes a sample from a simulated regular, ran-
dom, or aggregated pattern of trees using circular plots
placed randomly or systematically. The output consists of the
estimate for density, the frequency distribution of the number
of individuals per plot, the results of goodness of fit tests, and
indices of spatial pattern. This program is extremely useful
for instructive purposes. Inquiries about this program should
be sent to: Research Branch, Ministry of Forests, 1450
Government Street, Victoria, B.C. Canada V8W 3E7.
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