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We propose the use of a new methodological scheme for exploring and quantifying structure in bipartite
ecological networks. In this, graphical visualization and numerical measurement are combined, offering a
unique possibility for network analysis on a coherent conceptual basis. Dissimilarity between all species
pairs in either group of constituting species, calculated based on their interactions with the other group, is
decomposed into additive fractions expressing link replacement and degree difference of nodes. Together
with interaction similarity, these are used to visualize network features in form of a two-dimensional sim-
plex diagram. Furthermore, these quantities serve as a basis for characterizing and measuring nestedness,
architectural asymmetry as well as bimodality in the distribution of interaction dissimilarity, which in turn
can be used to detect modularity in the graph. The approach is extended to weighted links, facilitating
comparisons with the unweighted version of the same network, which was an old but unresolved issue
in network science. This is especially important for nestedness and modularity whose measurement has
been confined mostly to unweighted networks. The use of the method is demonstrated by artificial graphs
and on selected examples of actual ecological network data. We suggest that the methods apply equally
well to bipartite graphs used in other fields of science as well.

Keywords: asymmetry; connectance; Jaccard dissimilarity; modularity; nestedness; simplex.

c© The authors 2014. Published by Oxford University Press. All rights reserved.

 by guest on July 11, 2014
http://com

net.oxfordjournals.org/
D

ow
nloaded from

 

http://comnet.oxfordjournals.org/


ANALYSING ARCHITECTURE OF BIPARTITE ECOLOGICAL NETWORKS 169

1. Introduction

Interactions between two groups of species from the same assemblage have been routinely summa-
rized in ecology by bipartite networks [1–6]. In graph theoretical terms, a bipartite network consists
of two sets of vertices or nodes corresponding to two kinds of species and a collection of edges or
links, such that no vertices from the same set are adjacent [7]. These relations most commonly include
host–parasite, plant–seed disperser, plant–pollinator and plant–herbivore interactions, although other
types (plant–ant, anemone–fish, mycorrhiza–plant) have also been studied intensively. The reasons for
the steadily growing interest in these graphs are obvious because, for example, knowledge of host–
parasitoid networks may provide useful solutions for biological control [2], whereas plant–pollinator
networks may help us to manage the current pollination crisis [1]. It is also of primary theoretical impor-
tance to show whether these biological types of networks are different in basic architectural features,
such as nestedness and modularity, and if so, to reveal the ecological background behind the differences.

Large amounts of data have been available for studying ecological bipartite graphs (see databases
offered by Jordano [8] and NCEAS [9]), and a wide variety of visualization and analytical tools have
been developed and applied to them [10–14]. Although graphs themselves are conceived generally as
the most appropriate tools to summarize and visualize relations between sets, simple graphical displays
usually fail to provide comprehensible views for a large number of nodes and complex systems of links.
The ecological literature abounds in illustrations of bipartite networks which are impossible to inter-
pret by the naked eye. Thus, visualizing the detailed structure of a large interaction network is often
a challenge and serves more like an art than to facilitate understanding. A mathematically equivalent
summarization of a bipartite network is the adjacency (or interaction) matrix with one set of species in
rows and the other set as columns. An entry in this matrix is 1 if the two species in question are related,
and 0 otherwise. The structure of the matrix and the corresponding graph may be obvious by looking
at the two-dimensional arrangement of 1’s and 0’s, but successful visual interpretation always depends
on the order of rows and columns. If ordering is optimized for one feature of the graph (e.g. nested-
ness); the same arrangement may be much less informative for another (e.g. modularity, see Figs 2
and 3 in [12] or Fig. 2 in [15]). Thus, matrix representations may also perform poorly and therefore
insufficient by themselves for depicting network architecture appropriately. Simultaneous ordination
of rows and columns of the adjacency matrix by correspondence analysis (CA) may be a promising
approach to revealing network structure, as demonstrated in [12] using artificial interaction matrices.
For actual data, however, CA has only been used to find a one-dimensional ordering of species, thus
focusing on the diagonal structure of the interaction matrix. Further aid in interpreting graph structure
is offered by dozens of various coefficients expressing a particular property of the graph in terms of
a single coefficient value. The precise relationships between these properties are not yet known suffi-
ciently, which may slow down predictability and applicability. Although there have been several studies
reporting on comparisons of these functions and discussing their relative merits (see especially [14]),
the interpretation of coefficient values is not always straightforward. Moreover, many of them (e.g. the
clustering coefficient) apply only to food webs and are less interpretable for bipartite networks. We are
convinced that a new framework may be useful which combines graphical visualization with numerical
measurement into a single method suited specifically to bipartite graphs, thus revealing and measuring
several aspects of network structure simultaneously and efficiently.

We suggest that both the quantitative evaluation and the visualization of bipartite ecological net-
works could profit from the adaptation of a methodology recently developed by ourselves for matrix
analysis [16,17]. The essence of the new method is the comparison of all possible pairs of species
in either domain, based on the relationships to the species of the other domain as attributes, and
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the decomposition of the resulting similarities and complementary dissimilarities into three additive
components. These components have direct graph theoretical and ecological meaning, and can be graph-
ically displayed by two-dimensional simplices or ternary plots for all pairs of species. Within this plot,
three possibilities are available to reduce point scatter into one-dimensional simplex diagrams, each
reflecting further important properties of the graph. The arrangement of points together with numerical
results provides a sophisticated yet fairly easy-to-use tool for network analysis and facilitates compar-
isons between different situations. In agreement with the attribute duality principle, a graph (and the
corresponding matrix) can and should be viewed and analysed from two perspectives: via species in the
columns or via species in the rows. This leads to defining a novel measure of architectural asymmetry
in bipartite networks. The distribution of pairwise dissimilarities offers a relatively simple method for
evaluating modular structure as well. Further advantage of the new methodology is that it can be read-
ily extended to weighted bipartite graphs in which interaction strength between related species is also
expressed, thus allowing comparisons between unweighted and weighted representations for the same
set of study objects (see also [18]). We illustrate these issues by using several toy matrices and actual
ecological network data.

2. The simplex approach to bipartite networks

In this section, we place the simplex approach suggested by Podani and Schmera [16] into the context
of graph analysis. While some repetitions are unavoidable, we emphasize that different components of
the simplex bear new meaning when adopted to bipartite graphs. In what follows, therefore, complete
description of the underlying terminology and the functions is provided.

Ecological studies of mutualistic or antagonistic relationships between organisms are concerned
with two sets of partner species, P and M, containing p and m species, respectively. The bipartite network
G for these p + m species corresponds to the interaction matrix X with p rows and m columns, such that
xhj = 1 if interaction exists between species h from P and species j from the partner set M , and xhj = 0
otherwise. For simplicity without losing generality, in this section we shall refer to the species in rows
as plants (corresponding to hosts or anemones in certain network types) and to the species in columns
as pollinators (here: insects, corresponding to parasites, ants, fish, herbivores and fungi in some other
network types). Similarity between two pollinators j and k reflecting their relative agreement in the
identity and number of plant species pollinated can be expressed by the Jaccard index [19]

Sjk = a/(a + b + c), (1)

in which a is the number of species pollinated by both species, b is the number of species that are pol-
linated only by insect j and c is the number of species pollinated only by insect k. For simplicity, let
n = a + b + c, which in turn equals Σi max(xij, xik), while a + b = Σixij, etc. Sjk = 0 if the two insect
species pollinate completely different species, whereas Sjk = 1 if the two species pollinate the same set
of plant species. Coefficient (1) is not new in network science; it has long been used to express inter-
action (trophic) similarity between species in food webs [20–23] and more recently in plant–pollinator
networks as well [10,24].

The complement of Sjk is Jaccard dissimilarity

Ijk = (b + c)/n = 1 − Sjk , (2)
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Fig. 1. Interpretation of component terms in the comparison of pollinator species j and k from a small artificial bipartite network
(a) and its matrix equivalent (b). a = 1 is the number of plants shared (connected by solid links to both pollinators), b = 3 is the
number of plants linked only to j, c = 2 is the number of plants linked only to k. |b − c| = 1 is the absolute degree difference
between j and k (corresponding to the dashed link), while 2 min{b, c} = 4 is absolute link replacement (four dotted links). Quan-
tities a, |b − c| and 2 min{b, c} divided by n = a + b + c provide relativized measures used to determine the position of this pair
in the SDR simplex (c). As seen, structure for this small graph is dominated by link replacement, while interaction similarity and
degree difference have much less albeit equal significance.

which may be termed the interaction dissimilarity in the present context. The key issue here is that,
analogously to the decomposition of Jaccard dissimilarity in case of species × localities data matri-
ces [16,25], interaction dissimilarity is additively divided into two fractions. The first one expresses
how much the degrees of (number of links adjacent to) nodes j and k differ, and is given by

Djk = |b − c|/n, (3)

which is termed here the (relative) degree difference between the two nodes. This reflects the difference
between species on a specialist-generalist continuum (i.e. the richness of their connectedness in network
terms). The other fraction of dissimilarity Ijk is

Rjk = 2 min{b, c}/n, (4)

which expresses the proportion of the number of plants linked only to pollinator j replaced by different
plant species for pollinator k, and is called the relative link replacement function. The meaning of a, b,
c, |b − c| and 2 min{b, c} is illustrated in Fig. 1(a and b) for a small artificial example.

The basis of the present approach is the immediate observation that for any pair of pollinators
1 � j |= k � m, we have that Sjk + Djk + Rjk = 1. This offers the opportunity to use a two-dimensional
simplex frequently used in the natural sciences (e.g. geology) to express the relationship between three
quantities with a total of 1.0. The graphical illustration of the two-dimensional simplex is an equilateral
triangle, the so-called ternary or simplex plot. Here, we use the term SDR-simplex in which we preserve
as a convention the original set-up [16], so that the lower right corner is S, the lower left is D and the
top is R. In this diagram, the distance of a point (representing a pair of nodes in the graph) from a given
corner is inversely proportional to the respective fraction. For instance, the point is in the centroid of
the triangle if Sjk = Djk = Rjk = 1/3. For the pollinators in the small graph of Fig. 1(a), the scores are
Sjk = 1/6, Djk = 1/6 and Rjk = 4/6 which place this pair into the upper third of the triangle (Fig. 1c).
Then, if these functions are applied to all the possible pairs of pollinators, we shall have a diagram in
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which point pattern depicts network architecture in terms of interaction similarity, relativized degree
difference and relativized link replacement (Fig. 2).

The SDR-simplex may be reduced to three one-dimensional simplices by combining two values at
a time and using the third one as a contrast. These are derived by perpendicular projection of points
to each of the three medians of the triangle. For interaction networks, these one-dimensional simplices
show trends from

(1) Complete interaction similarity towards increasing dissimilarity: Sjk = a/n versus Ijk = Djk +
Rjk = (b + c)/n (interaction dissimilarity or I-simplex). The closer a pair of insects is to the S
corner, the more similar they are in pollination behaviour. If all pollinators are connected to all
plants, the network will be a complete bipartite graph and all points will lie on the corner (S =
100%). Closeness to the opposing I side of the triangle implies high interaction dissimilarity
of pollinator pairs. If the network is disintegrated into m isolated subgraphs, i.e. no pollinator
shares any plant with another pollinator, then all points will lie on the left side (I = 100%,
Fig. 2c).

(2) Degree difference towards increasing agreement: Djk = |b − c|/n versus Ajk = Sjk + Rjk = (a +
2 min{b, c})/n = (n − |b − c|)/n (degree agreement or A-simplex). If a pair of pollinators falls
close to the D corner, it means that they have large differences in the number of associated plant
species. A pair falls right onto the D corner (D = 100%) only if one of them has no links at all,
but normally no such species are included in interaction graphs. Closeness to the opposing A
side of the triangle reflects great similarity in degree. The network is half-regular if the degree
distribution with respect to the pollinators is even, i.e. all points are on the right side of the
triangle (A = 100%, Fig. 2c).

(3) Link replacement towards increasing nestedness: Rjk = 2 min{b, c}/n versus Njk = Sjk + Djk =
(a + |b − c|)/n (nestedness or N-simplex). On this, we see the antagonistic relationship between
species replacement and nestedness. A point representing a pair of pollinators falls onto the R
corner if they share no plants and their degree is the same (R = 100%). In accordance with the
general view in network science [26], pairwise nestedness is understood here as a relationship
between two species such that plants pollinated by either one is a subset of plants pollinated
by the other. Thus, projection to the N-simplex is conditioned upon having at least one shared
species (a > 0). In the broad sense, nestedness may be positive for pollinators even if they
have the same degree (N , [16,27]), i.e. when b = c. However, if nestedness is restricted to pairs
of pollinators that have unequal degree in the graph (as advocated by Ulrich and Almeida-
Neto [28]) we speak of strict nestedness (N ′), for which the conditions are a > 0 and b |= c.
That is, points on the left side (when a = 0), or on the left or the right sides of the triangle (when
a = 0 or b = c), are excluded from projection to the median, respectively, when calculating N
and N ′. All points falling onto the N (bottom) side of the triangle indicate perfect nestedness of
pollinators (N = 100%, Fig. 2c).

For brevity, these one-dimensional simplices were named after the combined measure (Fig. 2). In addi-
tion to the graphical display, results may also be expressed numerically to enhance interpretation and
comparison of different networks. The numerical output includes the mean values of S, D, R, I, A and
N , the first three defining the centroid of the points within the triangle. If multiplied by 100, these
quantities can be interpreted as percentage contributions to the scatter of points within the simplex
(as already explained in numbered paragraphs 1–3 above). Equations are presented in Supplementary
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Fig. 2. The SDR simplex for bipartite networks: concepts (a), measurement (b) and small interaction matrices corresponding to
extreme situations with all pairs of species (in columns) on a corner or a side (c). Full squares: presence of link, empty squares:
absence; a convention followed in most figures in this paper.
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(a)

(b)

Fig. 3. The SDR simplex for strongly modular network structures, showing bimodal distribution of points (representing pairs of
columns in the interaction matrices) if they are projected onto the I-simplex (thick line).

Appendix 1. In order to get even more meaningful information on graph structure, the entire proce-
dure described above is applied to the rows (in this case, plants) of the interaction matrix, so that every
bipartite graph is characterized by two SDR simplex diagrams and the two sets of associated percent-
age values simultaneously. Thus, comparison of column-wise and row-wise analyses for (m2 − m)/2
and (p2 − p)/2 points, respectively, may provide insight into network architecture deeper than when
structure is examined from either aspect only. Examples for two small artificial graphs and random data
with three different levels of connectedness are provided in Supplementary Appendix 2, Figs A.2.1–2.

The analysis of weighted networks is straightforward on similar grounds. The Jaccard similarity
index and its dissimilarity version have well-known counterparts for quantitative data: the Ruzicka
index and the Marczewski–Steinhaus coefficient, respectively [17]. In this case, zeros in the interaction
matrix reflect absence of links, while positive values indicate interaction strength between the corre-
sponding species pair (e.g. frequency of visits on flowers, prevalence). In other words, each 1 in matrix
X is replaced by a positive weight value. All functions described above have their weighted variants, dis-
tinguished in this text by an upper index ‘w’ preceding each symbol (wSjk , wNjk , etc.). Details of calcula-
tion are described in Supplementary Appendix 1; an example is presented in Supplementary Appendix
2, Fig. A.2.3. However, in the forthcoming discussion, a network is understood as an unweighted one,
unless otherwise specified.

3. Detection of modular structures based on simplex scores

The SDR simplex directly expresses many aspects of network architecture simultaneously, but it is not
yet shown whether modularity, another frequently examined property of ecological bipartite networks,
can also be assessed this manner. The term module has been defined in a wide variety of ways in the
ecological literature. Modules are sometimes understood as ‘any identifiable substructures in interaction
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networks’ (see [29] for references), but this definition is not operational according to our view because
many distinct types of ‘substructures’ can be conceived. In the majority of papers, a module is con-
sidered to be composed of interacting species from both sets such that within-module interactions are
more common than between-module relationships (e.g. [30]). Modules may be entirely separated from
outside but completely connected within, and these extreme cases are often called ‘compartments’ [31].
However, distinction between the two terms is not always clear and some authors use the two terms
interchangeably [32]. To avoid confusions, we shall use the term module only. Here, as the examples
that follow will illustrate, ‘ideal’ modules manifest themselves as rectangular blocks filled entirely with
1’s in the interaction matrix (complete connectance inside the module), such that the species included
have no links outside the blocks. A bipartite graph is said to have perfectly modular structure if the
interaction matrix contains ideal blocks only (as examples, see toy matrices d, e and f in Supplementary
Appendix 1, Fig. A.1.1), a situation never appearing in nature. Figure 3 shows that whenever modules
are not perfect but still considerably compact and fairly isolated from one another, the points are clus-
tered into two groups within the simplex triangle: one at the R corner and the upper part of the I side,
and the other at the similarity (S) corner. Thus, projection of points to the I-simplex shows bimodal
distribution, a phenomenon long observed for the Jaccard similarity values between species in food
webs [22]. Bimodality is strong when the blocks are equal in size (Fig. 3a), but differences between sizes
of modules—and therefore differences in degree—force the upper group of points to move towards the
D corner (Fig. 3b). Similar conclusions can be made if the matrices are examined by rows. Thus, to
express bimodality of the distribution, and therefore modality in the matrix quantitatively, we suggest a
novel measure WD (standing for ‘weighted distance’ between modes). It involves examination of this
distribution for both the columns and the rows and is calculated as the weighted difference between the
left and right modes of these distributions whenever the left peaks exist. Weights reflect the proportion
of node pairs pertaining to the nodes: the higher this ratio is, the more expressed are the peaks in the
distribution (see detailed description of the method in Supplementary Appendix 1).

Extreme or perfect modularity and complete nestedness are sometimes conceived as endpoints of
an ‘hypothetical’ structural continuum of bipartite networks (cf. [12]). Because strict nestedness (N ′)
takes minimum and maximum for these endpoints, respectively, we suggest the use of this function to
refine the results obtained by the WD measure. The idea is that these two descriptors taken together
reveal more information on the existence of modules than either one inspected alone. The relationships
between WD and N ′ can be visualized in a two-dimensional scatter plot, with WD as the horizontal
axis and strict nestedness as the vertical axis, and the points corresponding to bipartite networks. Sup-
plementary Appendix 1 provides details and artificial examples showing that, at least for the artificial
examples, nestedness and modularity are largely negatively related and that these two measures do not
combine arbitrarily (Supplementary Appendix 1, Fig. A.1.1A). Our analysis described later will reveal
whether this relationship holds true for real-world bipartite networks as well.

Notwithstanding negative correlation, a zero value for N ′ does not mean presence of modular struc-
tures automatically. Also, large weighted distance between modes is uninformative, for example, on the
number of modules. As illustrated by Fig. A.1.1. in Supplementary Appendix 1, different but perfectly
modular matrices can therefore take the same position in the WD-versus-nestedness plot. For recov-
ering modular structures in interaction networks even more clearly, we propose a further tool, namely
the use of the centroid scores on the I-simplex which separate overlapping modular matrices in another
two-dimensional plot (Supplementary Appendix 1, Fig. A.1.1B).

To sum it up, we suggest that the existence of modular structural elements in bipartite graphs is
indicated considerably well by using three different matrix descriptor variables simultaneously: the
weighted distance between modes in the distribution of the Jaccard coefficient, and the means of strict
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nestedness and interaction dissimilarity, all based on the pairwise comparison of species separately
for both domains. Scatter diagrams show the interplay between these network characteristics and are
useful to decide whether a given network is worth further analysing by more sophisticated algorithms
of modularity detection.

4. Architectural asymmetry in bipartite networks

The fact that structure in interaction matrices is examined using the SDR simplex by selecting any of
the two partner sets as the focal group, M or P, gives the opportunity to express architectural network
(a)symmetry numerically. Symmetry is understood here in the general sense that the graph for one set
of nodes is identical in some property to the partner set of the nodes and asymmetry is the departure
from this identity. For example, web asymmetry is commonly—and extremely simply—quantified as
the balance between the number of nodes in the two sets [11,14]. Here, we go a bit further by considering
a bipartite network symmetric if the centroids in the two SDR plots coincide, while distant centroids
are indicative of structural asymmetry. Thus, we suggest as a simple measure of asymmetry the use of
Euclidean distance between the centroids, as given by the following formula:

κ =
√

(S̄P − S̄M)2 + (D̄P − D̄M)2 + (R̄P − R̄M)2, (5)

where S̄P refers to the mean interaction similarity for focal group P, and so on (Supplementary Appendix
1, equations A1.1 to A1.3). κ is zero if the centroids coincide, while the theoretical maximum is

√
2,

never reached under realistic conditions (
√

2 is obtained for the lower left matrix in Fig. 2c). As an
illustration, consider first the slightly perturbed modular structures in Fig. 3, which appear fairly sym-
metric at first sight. The fact that similar structure emerges regardless of whether the matrix is viewed by
columns or rows is confirmed by the κ measure, which is 0.03 for matrix A and 0.08 for matrix B. The
higher second value reflects size differences between modules. Agreement between visual inspection of
the SDR simplex plot and the κ measure is further demonstrated by Fig. A.2.1 in the Supplementary
Appendix 2 for random graphs. Actual examples are discussed in the next section.

5. Analysis of real-world bipartite ecological networks

5.1 Unweighted networks

The SDR simplex method is applied to a total of 172 unweighted bipartite networks published in the
literature, taken from Internet resources or placed kindly at our disposal by colleagues (see Acknowl-
edgements). The data set includes 77 host–parasite, 48 plant–pollinator, 5 plant–herbivore, 3 ant–plant,
31 plant–seed disperser, 2 anemone–fish and 6 plant–mycorrhiza networks. Here, we do not report all
the results, but restrict our discussion briefly to those examples that exhibit extreme values for one or
more SDR scores.

• The Illinois plant–pollinator network [33] is outstanding in the present study for several respects
(Fig. 4a and b). It has the largest interaction matrix analysed (1044 pollinator species and 456 plants),
with plants as the focal group link replacement is the highest (R = 82.12%, Fig. 4a), while for the
pollinators interaction dissimilarity is the maximum found in this study (I = 99.003%, Fig. 4b).
Network asymmetry is also very high (κ = 0.55) because degree difference is much less emphasized
for the plants than for the pollinators (i.e. insects differ from one another much more in the number
of plants they pollinate, than plants do in the number of their pollinators).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 4. The SDR simplex plot for some selected examples from the studied set of unweighted networks. Grey symbols indicate
the centroid of point scatter within each triangle. (a) Illinois plants–pollinators network, plants [33]; (b) illinois plants–pollinators
network, pollinators [33]; (c) Prunus species–butterflies network from Britain, trees [34]; (d) Prunus species–butterflies network
from Britain, butterflies [34]; (e) Prunus species–butterflies network from Finland, butterflies [34]; (f) plants–pollinators network
in the Galapagos Islands, pollinators [35]; (g) ‘turnnog’ plants–seed dispersers network, plants [4]; (h) oil flowers–pollinators
network, pollinators [36]; (i) plants–seed dispersers network by Frost, birds [37]; (j) plants–mycorrhiza network, trees [38].

• The Prunus–butterfly network from Britain (6 tree species, 88 butterflies, [34]) is remarkable for its
high level of degree difference for the tree species (D = 66.66%, Fig. 4c), showing that the plants
differ strongly in the quality of food (nectar) they offer to insects. The butterflies nevertheless have
a much more even degree distribution, causing this network to exhibit the highest architectural
asymmetry among the networks studied (κ = 0.67, Fig. 4c and d).

• Interaction similarity is maximum, S = 70.96%, for the insects in another Prunus–butterfly network
from Finland ([34], see Fig. 4e) which is mainly responsible for its top value for nestedness as well
(N = 97.76%). This indicates relatively low nutrition specificity in a nested arrangement.

• Maximum degree agreement is A = 89.34, obtained for the pollinators in the Galapagos Islands
([35], Fig. 4f). This is because 20 of the 22 species pollinate only one species each—thus causing
most points to fall exactly on the S or the R corner.

• Strict nestedness (i.e. when nodes with equal degree are ignored) is the highest (N ′ = 89.86) for the
plants in the small plant–seed disperser network ‘turnnog’ (Jordano unpubl., cited in [4], Fig. 4g)
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and is also remarkable (N ′ = 86.7, Fig. 4h) for the pollinators in the oil flowers example [36]. Con-
nectance reaches the maximum for the birds as the focal group in the network described by Frost
([37], taken from [4]), for which nestedness is also exceedingly high (Fig. 4i).

• A more balanced situation also deserves our attention: for the deciduous forest trees in a plant–
mycorrhiza network [38], similarity and degree difference contribute equally, while link replacement
is only slightly lower. As a result, the point cloud is arranged along the A-simplex (Fig. 4j)—a
common feature of balanced sites by species data matrices observed by Podani and Schmera [16].

Modularity is examined for all networks using the three descriptors WD%, N ′% and I% (Fig. 5a). The
overwhelming majority of networks are positioned on the lower right part of the plot, below WD =
100% and N ′ = 100% and over I = 100% (the latter one indicated on a grey scale), which shows that
most of real-world networks do not exhibit high levels of modularity and strict nestedness, while the
balance is turned over in favour of high dissimilarities. This means that modules, if exist, are small so
that some interaction matrices are hardly distinguishable from sparse random matrices and diagonally
structured ones.

• On bottom right of this plot, an arrow points to an Amazonian ant–plant network [39] which takes the
rightmost position in the plot. After examining the structure of the interaction matrix (Fig. 5a, inset,
network #119), we find many small modules, i.e. strong fragmentation, with remarkable similarity
to toy matrices h and j. A small plant–pollinator network from the lava deserts of the Galapagos
Islands [35] has similar structure (Fig. 5a, inset). Further three networks appear to exhibit modular
structure (flea–mammal network from Nepal [40]; plant–pollinator network from the Andes, highest
elevation [41]; and a flea–mammal network from Sugaty valley, Kazakhstan [42] cited in [43]).There
are practically no networks exhibiting sharp modularity as suggested by some idealized textbook
examples (e.g. Fig. 10.16 in [44]).

• The other arrow points to the position taken by the large Galapagos pollination network obtained
for multiple communities [45]. Rearranged to optimal structure for either modularity or nestedness,
we see that it has a more complex pattern and part of modularity comes from a few weakly modular
units, while nestedness is due largely to a single generalist plant and a single generalist pollinator
(Supplementary Appendix 2, Fig. A.2.4A and B).

• The topmost positions are taken by networks with high strict nestedness values (plant–bird network
from Trinidad [46] and flea–mammal network from Korea [47]; Fig. 5a, insets), which, therefore,
have no modular structure at all. Even though these matrices were rearranged to optimize diagonal
ordering, nestedness is still apparent.

• Several very large matrices have neither nested nor modular structures; these are found on the
lower left part of the diagram (e.g. Illinois plant–pollinator [33], plant–pollinator network from
Venezuela [48], avian–lice network, (L. Rózsa, unpubl.), tropical orchid–mycorrhiza network [49],
Plant–leaf miner network from South America [6]).

5.2 Weighted networks

Of the networks evaluated on the basis of unweighted links, 108 had weights as well, namely 76
host–parasite, 17 plant–pollinator, 11 plant–seed disperser, 3 plant–ant and 1 plant–herbivore. As we
did for unweighted networks, we select some of the most striking examples for demonstration and
discussion.
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Fig. 5. Modularity plots for 172 unweighted (a) and 108 weighted (b) ecological bipartite networks using WD% as horizontal
and N ′% as vertical axis. The third descriptor (I%) is expressed on a grey scale applied to the symbols, from pale grey (lowest
I%) to black (highest I%). Weighted links in the interaction matrices (insets in b) are represented by symbols , , and �
corresponding to four equal intervals in the range of the weights.
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(a)                                      (b)                                  (c) (d)

(e) (f) (g)

Fig. 6. The SDR simplex plot for some selected examples from the studied set of weighted networks. Grey symbols indicate
the centroid of point scatter within each triangle. (a) Host–parasite part of the Carpentieria food web, hosts (max S) [50]; (b)
Khasan, hosts (max D) [51]; (c) Wyoming, hosts (max R, A) [52]; (d) Wyoming, parasites [52]; (e) plant–leaf miner network
South America, herbs [6]; (f) Korea, parasites (max N) [47]; (g) Korea hosts (max N ′) [47].

• Interaction similarity is the highest among the hosts in the host–parasite part of the Carpinteria salt
marsh food web (S = 40.5%, Fig. 6a [50]). That the maximum is only around 40 (compared with the
maximum of 70 for the unweighted versions) reflects that weighting further increases differences
between the species. In this particular case, it is nevertheless interesting that for the unweighted case
similarity was only slightly higher (S = 43%) than for the weighted case. A potential explanation is
that the data are overwhelmed by low abundance values.

• Degree difference reached the maximum for the Khasan flea–mammal network, Russia, for hosts
(D = 83%, Fig. 6b; [51] cited in [43]).

• Link replacement and, at the same time, degree agreement have their maxima for hosts in the flea–
mammal network from Wyoming (R = 88%, A = 98%, Fig. 6c; [52]) suggesting gradual shift of
similar parasite abundances from one mammal species to the other. The Wyoming network has the
highest architectural asymmetry as well (κ = 0.892) (compare Fig. 6c (hosts) and 6d (parasites)).

• Interaction dissimilarity was found to be the highest (I = 99.7%, Fig. 6e) for the plants in the plant–
herbivore network of Cagnolo et al. [6] reflecting an almost complete segregation of herbs with
respect to herbivores.

• Nestedness is remarkably high for the parasites (N = 89.9%) and strict nestedness is the highest for
the hosts (N ′ = 88.5%) in the same network, namely the flea–mammal network from Korea (Fig. 6f
and g; [47]). The pattern of link replacement and degree agreement may be the outcome of some
combination of carrying capacity and specialization. A certain amount of parasites is easily found,
but too many of them would be dangerous for the host. Also, specialized parasites are probably
successful in keeping potential new invaders away from the host.
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(a) (b) (c)

Fig. 7. The effect of weighting on network structure as reflected by the SDR simplex plot. Upper row: unweighted networks,
lower row: weighted networks. (a) insects in the plant–leaf miner network, South America [6]; (b) parasites in the host–parasite
part of the Carpentieria food web [50]; (c) hosts in the host–parasite part of the Carpentieria food web [50].

Weighting causes a more even distribution of networks in the modularity plot (Fig. 5b), while the I%
values are almost always near the maximum (most symbols are dark grey or black).

• The strongest modular structure is detected for the arctic plant–pollinator network [53], explained
by some clusters of extremely high weights. An ant–plant network [39] (strongest modularity in
the unweighted case) has moved to the bottom centre, because the large weights form an obvious
diagonal structure (see inset, Fig. 5b).

• Highest nestedness and lack of modularity were detected, for example, for two host–parasite net-
works (Korea, [47] and Wyoming, [52])—the first being in extreme position in the unweighted case
as well—and the plant–pollinator network from Trinidad [46]. We call attention to another example,
a plant–leaf miner network [6] which takes similar position in both networks.

5.3 The effect of weighting

Now, we compare weighted networks with their unweighted (binary) variants, so the sample from
the real-world networks is the same as in the previous section. As a simple measure for the differ-
ence between weighted and unweighted versions of the same network, we use formula (5) modified as
follows:

υ =
√

(S̄M − wS̄M)2 + (D̄M − wD̄M)2 + (R̄M − wR̄M)2 (6)

for species set M. For the partner set P, the formula can be rewritten easily. Out of the 108 networks
analysed, the largest difference was found for the herbivores in a plant–leaf miner network [6]. In this
case, υ = 0.63, while the SDR simplex diagrams are presented in Fig. 7a. Whereas interaction similarity
is near zero in both cases, the unweighted version is dominated by link replacement. The move of
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the centroid close to the D corner in the weighted network shows that emphasis is shifted towards
excessive weight differences. The smallest difference between the centroids of the two versions of the
same network, that is, the smallest effect of weighting, was detected for the host/parasite section of the
Carpenteria food web [50]. υ is only 0.02 for parasites and 0.03 for hosts, suggesting that the centroids
for hosts and parasites almost coincide in the plot no matter if the network is weighted or not for both
species sets (Fig. 7b and c). These observations support earlier studies reporting that weighting is more
important in the case of food webs than for other network types [18].

6. Discussion

Bipartite networks representing mutualistic or antagonistic interactions between species have received
increased attention in ecology in the past decades. Network structure has been most commonly assessed
by emphasizing two features, nestedness and modularity, although some other graph theoretical descrip-
tors are also considered in some reports (the topological importance index [54]; KeyPlayer analysis [13],
or a suite of many network indices [14]). These studies largely underemphasized the importance of a
common conceptual basis for linking the different measures. In this paper, we showed that the com-
ponents contributing to the architectural diversity of bipartite ecological networks can be expressed by
several pairwise functions pertaining to the same theoretical and methodological scheme. The formula
behind our approach is Jaccard dissimilarity calculated between species pairs in either species domain,
based on their relationships to the species of the other, and decomposed into additive fractions. Results
may be expressed both graphically (ternary plots) and numerically (centroid scores and percentage con-
tributions), a choice hardly available in other approaches. In the SDR simplex diagrams, points stand
for species pairs, while tips and edges correspond to stand-alone and combined structural descriptors
of the graph, respectively. The shape of the point cloud is useful to demonstrate whether certain fea-
tures dominate within network structure (e.g. closeness of points to the nestedness side) or the entire
network is heterogeneous (point cloud is spread all over within the plot). Since many points may over-
lap, especially if the number of species is large, it is also useful to show the position of the centroid
of the point scatter. Centroid scores multiplied by 100 are conceived as percentage contributions of
the basic features (S = interaction similarity, D = degree difference and R = link replacement) to over-
all network structure. Combining two of these at a time produce further measures, namely nestedness
(S + D), interaction dissimilarity (D + R) or degree agreement (S + R).

As a further advantage, one has the opportunity to examine a given network based on unweighted
or weighted links in a logically comparable manner. A fundamental property is order invariance: the
results do not depend on the sequence by which rows and columns are presented in the matrix for
analysis. Since the indices involved are all relativized, the size of networks poses no problems for the
investigator, facilitating comparisons between networks and subsequent meta-analyses. These novelties
together specify an efficient analytical toolkit for network science, allowing comparative studies of
bipartite networks in the future.

The main achievement in this paper is the SDR simplex and its variant applicable to weighted net-
works. Indirectly, the method is linked to the detection of modularity as well, because the distribution
of interaction dissimilarity values is useful in this regard. We can only confirm the general view that
detecting modularity in bipartite networks is a complex matter, requiring sophisticated algorithms (such
as simulated annealing), pre-defined run parameters (e.g. number of modules) and facing difficulties
with large graphs [4,10,29,55,56]. Nevertheless, modularity of network architecture can be evaluated
indirectly, rapidly and relatively easily by the simplex approach for any network size, as compared to
other modularity algorithms which usually require much more computing time. Our conjecture is that
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there is no single, one-valued function that can be used by itself to quantify the oft-mentioned contrast
between nestedness and modularity for any interaction matrix. We have suggested that the modularity
problem requires a three-dimensional approximation, using a coefficient of bimodality in the distribution
of interaction dissimilarity, and measures of mean strict nestedness and mean interaction dissimilarity,
calculated in a two-way mode on the interaction matrix. Candidates for modular matrices can be iden-
tified on the basis of low nestedness and high bimodality, and then insight into the number of modules
is obtained by examining mean interaction dissimilarity. Portrayed for many ecological networks in a
two-dimensional scatter plot, most unweighted networks are constrained to a relatively small portion of
the state-space, reflecting that networks are dominated by extremely fragmented modules or gradient-
like structures in all biological types (both antagonistic and mutualistic). This confirms the conclusions
by Trøjelsgaard and Olesen [57] who found that 5 was the minimum number of modules in a set of
54 networks. This cannot be attributed only to the fact that connectance rarely exceeded 50% in the
networks studied here, but also to the lack of bimodality in the distribution of I. This effect is even more
pronounced for weighted links because strong interactions are relatively rare in the real world.

We must admit, however, that the weighted mode distance measure, mean strict nestedness and mean
interaction dissimilarity and therefore positions in the modularity plot are useful to get only some first
insights into potential compartmentalization, and cannot substitute more sophisticated module-seeking
algorithms.

Asymmetry is a property of bipartite networks whose measurement is more straightforward via
SDR-simplices than that of modularity. Recall that our approach can examine a network in two alter-
native ways: starting from dissimilarities between species of either domain, e.g. for hosts as well as for
parasites. (Construction of the modularity plot mentioned in the previous paragraph was already based
on this double view.) We propose the distance between the centroids in the two simplex plots as a simple
measure of asymmetry of the bipartite graph, while acknowledge that this is only the first step towards
defining more sophisticated coefficients of symmetry. Based on this, we conclude that the majority of
real-world bipartite networks are reasonably symmetric (mean κ asymmetry ∼0.1–0.15) regardless of
weighting. In the near past, asymmetry was also measured with focus on a particular property of the
graph, for example, as a balance between the number of species in the two sets [11]. For weighted net-
works, Bascompte et al. [3] measured asymmetry of interaction strength separately for each possible
pair of related species, while Maeng and Lee [58] compared the distributions of interaction strength
between plants and pollinators to devise an overall coefficient. It is obvious from these papers, as well
as from [59] that the concept of asymmetry is equivocal, and differences in practically any measure
of network structure calculated for the two sets of species can be considered as a rough indication of
asymmetry. We plan, therefore, to expand our measure such that more information on the distribution
of points within the triangle plots will be used to express structural asymmetry more faithfully.

As an introduction to new concepts and methods, we did not exhaust all the possibilities offered by
the SDR simplex and associated tools. Our emphasis was placed on the explorative analysis of pattern
in bipartite networks, so we did not examine possibilities of using different null models and statistical
tests. Employing null models to test the significance of network properties would have made the present
study overly complicated. We understand that significance testing based on various null models must
be an essential part of any quantitative network study, and therefore plan to report on progress into this
direction in a separate study.

Our study focused on ecological bipartite networks, while many artificial examples were provided
to facilitate understanding of the new methodology. Thus, we expect with good reason that the simplex
approach may be useful in other fields of science in which bipartite graphs have practical importance
(see examples in [7]).
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7. Supplementary data

Supplementary data are available at Journal of Complex Networks online.
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