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Abstract: Available methodology to detect pattern in plant communities (or sessile animal assemblages) is reviewed and
criticized. Attention is focused on the area dependence of spatial analysis, as based on plot sampling. The discussion of
procedures follows the conceptual scheme of Juhdsz-Nagy showing that the methods reflect different levels of
understanding community characteristics. It is pointed out that Juhdsz-Nagy’s information theory-based approach
represents the most sophisticated analytical tool for the presence/absence case. We emphasize that any study of
pattern-related vegetation phenomena should consider the spatial dependence of observation, measurement and

description of vegetational properties.

I. Introduction

Community-levél pattern attracts considerable
and steadily growing interest in terrestrial plant
ecology. However, different aspects of pattern
have received an unbalanced treatment in the
literature, and the presentation of the topic is
often misleading. Very often, the scale of pattern
has been detected for separate species, with results
published under .the headline ’community
pattern’, forgetting that the latter is not merely a
’sum’ or "average’ of single species patterns. Multi-
variate procedures offer at first glance a more ade-
quate approach to this problem. Clustering and
multidimensional scaling do reveal various struc-
tural properties of vegetation which relate to pat-
tern (clusters, gradients, cf. Orldci 1988), but scale
(areal) dependence of classifications and ordina-
tions is far too often neglected in most applica-
tions. It was Juhdsz-Nagy (1967, 1976, 1984, 1993;
see also Juhdsz-Nagy & Podani 1983) who recog-
nized first that analyzing the scale of community
pattern requires a well-founded conceptual basis
and a specific methodology utilizing appropriate

sampling design. Juhdsz-Nagy’s approach and
other methods developed for similar purpose, not
smoothed into widely followed and fashionable
trends in ecology, did not receive sufficient atten-
tion. The present paper tries to emphasize the im-
portance of the topic through a review of concepts
and available procedures, presents examples and
outlines future perspectives. =

IL. Characteristic areas

Plant communities are located in the 3-dimen-
sional real world, yet community pattern is usually
described as if the vertical dimension were non-ex-
isting or irrelevant. We do not engage in any dis-
pute whether this simplification is correct or not,
but realize that communities are most often
treated as essentially two-dimensional entities.
This is implicit whenever sampling design is
characterized by specifying (two-dimensional) plot
size, (planar) shape and arrangement (on the
plane) ignoring vertical extension and any
stratification. Further reduction of dimensionality
to one, a practice in gradient analysis and in the
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study of repetitive pattern, stationarity and he-
terogeneity along a fixed direction, is also com-
mon in ecology (see e.g., Dale, 1993, in this
volume), but the present paper is concerned only
with the two-dimensional aspect.

Given this startpoint, community variation is to be
considered over area, and the spatial scale at
which this variation is observed (or measured) is
expressed in area units. Distinguished points on
this scale, pertaining to some extreme values of
measures of community variation, will be termed
characteristic areas after Juhdsz-Nagy (1967).

I1.1. Simple examples

The area dependence of community variation is
demonstrated with an artificial 3-species com-
munity in Figure 1a. The example is deliberately
very simple: plant pattern is completely random,
individuals are considered point-like in a con-
tinuous space and the species have approximately
equal densities. At small area (Fig. 1b) plots are
likely to include only a single species or none; the
data obtained do not provide any useful informa-
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Figure 1. The effect of plot size on the species composi-
tion of plots in a 3-species random assemblage.
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tion (in the common sense of the word) regarding
the joint behavior of species in the community and
the variation covered is no more than a list of
species present. At the other extreme of the scale,
every plot of very large size will include all the
species (Fig. 1d). A presence/absence data matrix
for this case exhibits no variation and is again
uninformative on multispecies pattern. The inter-
mediate size shown in Fig. 1c will yield a more
diverse sample: some plots still have a single
species but many include various combinations of
the three species. This is approximately the scale
point at which plots seem to be maximally dif-
ferent, thus providing a lot more information on
community variation than the other areas.

This "best” plot size is influenced by many textural
and structural properties (sensu Barkman 1979) of
the community (abundances, aggregation of in-
dividuals, positive or negative species associations,
etc.). Let us examine just one more "community”
with a pattern markedly different from the
previous example (with aggregated spatial disper-
sion of species) but abundances remaining the
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Figure 2. The effect of plot size on the species composi-
tion of plots in a 3-species community with a definitely
non-random plant pattern.
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same (Fig. 2a). The area which proved the most
informative in the previous case is now too small:
only a single species occurs in most plots (Fig. 2b).
We need larger plots to capture a scale point lead-
ing to a much more "diverse" sample (Fig. 2c). The
plot size at which all plots include all the species is
apparently larger than in the previous example
(Fig. 2d).

11.2. An earlier concept

An interesting historical fact deserves attention at
this point. Of the various approaches to com-
munity ecology, the Gestalt-oriented Braun-Blan-
quet tradition, which had very little affection to
numbers and statistics, showed the greatest inter-
est in areas that can be used in community charac-
terization. The so-called minimum area concept of
phytosociology refers to a plot size at which "typi-
cal characteristics of the community start to
develop” (see Whittaker 1973, Barkman 1989, for
review). The need for finding this area was
desperate, but definitions were at best inoperative
(or, at worst, circular). Most often, species/area
curves were used to find a plot size beyond which
increases in the total number of species become
negligible. Despite the considerable effort devoted
to the search for "flattening" or "inflexion" points"
in species/area curves, the approach failed.

I1.3. Estimation vs pattern detection

Even though different species/area models assume
certain underlying distributional properties of the
community, scale of pattern remains unexplained
by these curves. As Bouxin & Gautier (1982) note:
"one may wonder how the traditional species-area
curve can serve to define a minimal area when the
curve is a result of a mixture of very different pat-
terns". The explanation lies in the unavoidable dis-
tinction between two contrasting objectives of
vegetation sampling: estimation of some popula-
tion (or community) parameter and pattern detec-
tion (Kenkel et al. 1989). As they point out, for
estimation objectives reduction of sampling
variance is crucial, whereas pattern detection re-
quires maximized sampling variance (max.
heterogeneity of data). The species/area relation
has to do with estimation: upon area increases we
achieve an increasing precision and accuracy of
species number for the whole community. Similar
is the dependence of "species-diversity" upon area
(Pielou 1975, p. 12) and many other estimates that
are used in conventional statistics (mean cover of
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a species, etc.). A common feature in such inves-
tigations is that the larg-er the area sampled (via
either plot size or empirical sample size increases)
the better the estimation, and convergence to the
theoretical value is expected (supposing that es-
timates are not biased).

The relationship of structural, pattern-related
properties to sampling design is different: plot size
and empirical sample size increases do not
produce the same effect. Measures that can depict
area dependence of community variation (i.e., the
scale of multispecies pattern) respond to plot area
increases in another way: instead of converging to
a theoretical value, they exhibit some peaked ef-
fect where variation is the highest. In a full anal-
ogy to the analysis of univariate pattern,
characteristic areas of communities can be de-
fined in terms of maxima and minima of meaning-
ful measures of multispecies pattern. Such areas
correspond with the scale of multispecies pattern,
just like plot (or block) sizes associated with ex-
treme values of the variance/mean ratio for a
single species. It is therefore inevitable that a
series of plot sizes is required in sampling, so
detection of scale of community pattern is a case
of space series analysis (Podani 1992). Sample size
increases, on the other hand, have the same effect
as for population parameters: the more plots (of a
given size) are examined the better the estimates
of measures of community variation and charac-
teristic areas. Thus, estimation is also involved in
this case, but the dependence of estimates on area
is of primary concern.

I11. Admissible sampling designs

Before discussing measures that meet the above
requirement, we discuss basic types of sampling
designs that can be used for evaluating scale
dependence of community variation. Of the four
basic characteristics of plot sampling (i.e., num-
ber, size, shape and arrangement) plot size is to be
increased, whereas the others should be kept con-
stant, to avoid confounding effects of changing
two or more sampling characteristics.

[IL1. Plot shape

It is preferably isodiametric (circular or quadratic)
so as to minimize vegetational heterogeneities
(edges) captured by a single plot. Long sampling
units are obviously inadequate for evaluating areal
aspects of scale, because they are more likely to
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run through more diverse parts of the community
and to include plants within the same {)lot even if
they actually grow far apart in the field".

111.2. Arrangement of plots

Some random component in the arrangement of
plots is generally recommended to reduce the
chance of biased results. Plots located at preferred
sites may also be used, although results obtained
from such a sample cannot be generalized for the
whole community. Full randomization is difficult
to achieve in the field (although it can be done
easily in computer simulated sampling experi-
ments). Randomization and computation of
measures of community variation may be done
separately for each plot size. Its advantage is that
samples can be considered independent. A nested
arrangement of increasing plot sizes based on a
single arrangement is also possible (Fig. 3), to
facilitate less laborious field sampling. Systematic
arrangement of very small contiguous square units
in a grid randomly located in the community is
also possible, so that sampling effort can be great-
ly reduced. Data for larger plots can be generated
by successive fusions of neighbouring units. Care
must be taken to keep plot shape constant, so that
the confounding effects of plot size increases with
alternating shapes of rectangular and quadratic
blocks (as in the Greig-Smith technique) are
avoided (Pielou 1977). However, in this case the
analysis is restricted to a small portion of the com-
munity and generalizations to the full community
should be-done with caution (replicate grids may
provide a solution).

In an ideal situation sample plots do not overlap
one another, so that the data set thus obtained can
be subjected to significance tests, if other sampling
“criteria do not violate the independence criterion.
In the nested arrangement the samples will
depend on each other and in computerized sam-
pling (Podani 1987) the studied area is usually
"oversampled” such that small parts of the study
region may get into many sample plots. In these
cases conventional significance tests do not apply.
However, for pattern detection objectives in-
dependence is not always a strict requirement. For
descriptive purposes, e.g., in detecting characteris-
tic areas, oversampling may provide better es-
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Figure 3. Random arrangement of nested plots for study-
ing multispecies pattern in a community.

timates than the traditional strategy because of
the much larger empirical sample size that can be
used. If one insists to attach some probabilities to
the resulting figures to allow comparisons, the
bootstrap technique (help yourself via resampling
your own data thousand times!) is reccommended?.

111.3. Empirical sample size

We shall use the term sample size in the statistical
sense: technically sample size refers to the number
of sample plots or sampling units, and sample will
refer to the full set of such plots. (In ecology, a
sample is often understood as a single sampling
unit, and this is a common source of confusion.)
As mentioned earlier, sample size increases affect
the estimation of measures of community varia-
tion and characteristic areas. The analytical tech-
niques greatly differ in sample size requirements.
A relatively large sample is necessary for detecting
characteristic areas associated with the collective
behavior of species (see subsection IV.3), whereas
conventional samples of size 50-200 are usually
sufficient for the other strategies (subsections
Iv.1-2).

1I1.4. Plot sizes

There is no general rule as to the selection of the
smallest and the largest size in the series: the
range should be broad enough to capture the
characteristic areas but these areas are known only
a posteriori. Nevertheless, plant and community
size and our previous field experience should
govern our choices. The changes at each step of
the series are also arbitrarily defined. These chan-

1 Long units obtained by fusing transect cells are used in the analysis of direction-related phenomena of vegetation pattern.

Edge effects may also be critical if sample plots are relatively large compared to the area of the study region. Since overlaps
with the boundary line are not allowed, in random arrangements the central part of the region will be more intensively
sampled than the peripheral parts. The usual toroidal corrections for edge effect do not work, however, because fusions of
remote fractional plots are meaningless for the analysis of multispecies patterns (cf. Podani 1987).
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ges should preferably be as small as possible to be
able to detect the characteristic areas precisely,
but time and cost limitations will dictate our
choice.

IIL5. Data

Species presence, cover or number of individuals
of species is recorded for each plot at each size, to
yield a series of data matrices, X1, X2,...,Xk,»Xp,
where p is the number of different plot sizes. The
size of each matrix is n by m, n is the number of
species detected in the community, m is the num-
“ber of plots (sample size) kept the same for each
plot size. In X, summation over rows for column j
is denoted by xjk (plot total), summation over
columns for row 11is x; x (species total).

IV. Approaches to detect scale of multispecies
pattern

Part of the conceptual basis developed by Juhdsz-
Nagy is the sequence of certain objects and opera-
tions associated with vegetation surveys (see e.g.,
Juh4sz-Nagy 1993, Figure 4). The basic scheme of
flora - vegetation (or in a general context: basic
set -» compositional structures) is refined as point
set (flora, fauna, biota) -» simplex set (e.g., abun-
dances of elements) - Venn complex (showing in-
teraction of components, e.g., species
associations) -» sorted complex (such as an or-
dination) - allocated complex (e.g., a vegetation
map). Each step represents a different level of un-
derstanding community characteristics and dif-
ferent details. Detection of the community-level
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pattern can be attempted at the first four stages
along this sequence. The subsequent discussion of
available methodology will follow the above
scheme. ’

IV.1. Methods related to the basic set

For vegetation surveys the basic set is composed
of plant species that are present in the community
studied. The methods will operate on species sub-
sets found in sampling units; such a subset in a
sample . plot will be termed the florula (Juhdsz-
Nagy & Podani 1983) to make distinction from
flora, a universal set in this context, which is the
collection of all species present in the community.

IV.1.1. Number of species and its variance.

In the simplest case the size of florulas, i.e., the
number of species ("species richness”, xj for
presence absence data) per plot, is considered as a
starting point for analyzing community variation.
Relevant published work stems from Pielou’s
(1972) pioneering studies. She suggested to use
the difference between the variance of species
number, Var[xj], and the expected variance
under the null hypothesis of completely indepen-
dent distribution of species given by

m
Xjk x.zk
E(Var[xjy]) = D =& - =5
j=1 M m

as a measure of overall association of species.
Robson (in the Appendix to Pielou 1972), derived
a test statistic in form of the ratio of the actual and
expected values, which was subsequently used by

5 N EVANNEN R N
point set simplex set Venn-complex  Sorted complex Allocated
complex

Figure 4. A conceptual scheme illustrating different levels of understanding vegetation characteristics (after Juhdsz-

‘Nagy 1993).
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several authors (e.g., Schluter 1984, McCulloch
1984, Palmer 1987, Wilson et al. 1987, Watkins &
Wilson 1992). It is interesting historically that
Pielou completely neglected the spatial aspect of
this statistic, and demonstrated its use on a single
plot size in a succession study, notwithstanding
that spatial dependence of species associations
had long been known (cf. Greig-Smith 1985). Pal-
mer (1987), for example, examined the depen-
dence of Var[x.jk] and Var[x jx] / E(Var[xk]) upon
plot size in oldfields and detected maxima in
several cases, whereas monotone increases in
others. His results were inconclusive as to the
overall behavior of this function probably because
of the relatively few scale points (4) and narrow
scale (0.01 to 10 m?) that he used. Wilson et al.
(1987), using an even narrower range of plot sizes
(up to 1 m?), found "little evidence" of plot size
dependence. This led Zobel et al. (1993) to rely on
a single plot size in a succession study followed by
a detailed and very sophisticated statistical
analysis of data. We feel, however, that complete
ignorance of scale dependence in such surveys is
quite dangerous and potentially misleading (see
also Kenkel et al. 1989). At the same time, the
same authors (Zobel et al. 1993, p. 490) correctly
point out that interpretation of changes in this
ratio by background ecological phenomena (e.g.,
niche limitation, positive segregation, etc.) is not
unique (see also Leps 1990a, for similar comments
on single species patterns and interspecific as-
sociations). We can agree completely with
Schiuter (1984, p. 1003) who goes even further by
saying that "there is no necessary correspondence
between the result of the variance test and any
ecological process. Researchers frequently seem
want to infer the existence of a particular interac-
tion between species (e.g., competition) on the
basis of a statistical test... but such inference is

usually not valid". Computer simulations, with

known population and community parameters,
may be helpful in this regard. For example,
T6thmérész & Erdei (1992) showed the depen-
dence of Var[x;x] upon plot size as well as the
dominance relations between species and found
definite peaked effects. Obviously, more field data
and simulations are required to examine this, ac-
tually the simplest possible measure of community
variation.

1V 2. Methods using simplex sets

A typical simplex set comprises frequency dis-
tributions of species; often used in phytosociology
(coenological spectra) and termed the texture by
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Barkman (1979). Functions to be discussed in this
subsection will be based on such distributions.

IV 2.1. Variance of species-diversity.

Pielou (1966) suggested the term "pattern diver-
sity" which is "high when the individuals of the
various species are thoroughly mingled so that
several species are usually present in any small
sub-area; it is low if the species are segregated so
that small sub-areas are likely to contain in-
dividuals of only a few of the species.” This con-
cept was first used to n-tuplets of species (e.g.,
nearest neighbors), rather than sample plots, but
later it was applied to plot data as well (e.g., Zobel
et al. 1993). The computations involve the deter-
mination of species-diversity in each plot (using
the Shannon-Weaver entropy-estimator with
natural logarithm), denoted by H’jk, which is
potentially replaced by exp(H’jk) to measure the
number of equally common species that would
produce the same H’jx as the actual data (Peet
1974). Var(H’j) is then used to measure pattern
diversity. The expectation of this variance for the
null situation is unknown, but Zobel et al. (1993)
used the bootstrap technique to obtain sig-
nificance levels for the deviations of Var(H’j)
from the expectation. Whether or not Var(H’j)
and the deviations exhibit peaked effect over area
increases requires future investigations.

1V.2.2. Local distinctiveness (pooled entropy).

The concept of entropy allows us to define an al-
ternative spatial characteristic of communities:
the plot size with the highest uncertainty that any
randomly selected plant species is found in the
plot. For small plots this uncertainty is relatively
low; we can be pretty sure that a randomly chosen
species will be absent. On the other extreme, for
large plots, there is also a low uncertainty because
most species are likely to be included. There is an
intermediate plot size for which this uncertainty is
the maximum, where the separate species are the
most distinctive among the plots. Two plots, on
the average, differ in the greatest number of
species at this size. Hence the name local distinc-
tiveness suggested by Juhdsz-Nagy, but other terms
also appear in the literature of ecology and
taxonomy (e.g., "total information" or "informa-
tion content”). Mathematically it is perhaps most
straightforward to use the term pooled entropy; be-
cause this measure is additive, being obtained as
the sum of single species entropies:

mEi([L]) = 21 mEiy,
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where who happens to select a plot size at about 20 m?
would not detect any change over succession, and

mHig = m log m - Xix 0g Xix - (M-Xix) l0g (MXik) e do not have to emphasize how misleading con-

is the entropy of species i at plot size k (recall that

it is present in x;x of m sampling units). Graphi-

cally, local distinctiveness is conceived as the sum 2000
of areas of plane figures in a Venn-diagram. Each
species has its own maximum area of entropy; its
dependence on abundance and spatial dispersion
is demonstrated in Figures 5-6, respectively, in
simulated "populations”. The maximum point for
mﬁk([L]) is called the compensatory area®
(Juhdsz-Nagy & Podani 1983). Its dependence on
plot size over time, from a case study on primary
succession, illustrates the scale problem common- . ,
ly disregarded in successmn studies. For small plot 0'1 To o0 1000
sizes (up to 20 m 2) local distinctiveness and the - Sampling Unit Area (Arbitrary Units)
compensatory area decreases over tlme (Fig. 7),
whereas for large plot sizes (cca 30 m? and more)
the temporal trend is the opposite. Working with [+ Regular  —— Random  —— Aggregated ]
small plots we detect increasing heterogeneity ’ '
(divergence) whereas with very large plots we _ _ )
would find decreasing hetero-geneity (conver- Figure 6. Plot size dependence of species entropy in

: : B : three simulated populations with different spatial disper-
gence) during the same period. An investigator sion (with a constant frequency of 6.25),
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Figure 5. Plot size dependence of species entropy in four ~ Figure 7. Plot size dependence of local distinctiveness
random populations with frequencies ranging from 1.56  over succession (from Bartha 1991).
to 50% (frequency is proportional to commonness).

3 Williams et al. (1969) suggested a method called multiple nearest neighbor analysis which does not use sample plots but
deserves attention in this paper. Instead of plots, the position of every plant individual is recorded and all inter-plant
distances calculated. Each plant, together with its ¢ nearest neighbors is considered as a "sampling unit”" so that we have as
many units as plants. In this case q is changed in the series. Williams an co-workers computed the pooled entropy for this
clump system and found that it is entirely the function of the mean distance from the reference individuals, i.e., it is distance
and consequently area that matters rather than q. Thus, a hybrid procedure of pattern analysis may also be conceivable. In
this, each individual may be considered as the centroid of a circular plot with radius r, and all species found within this plot
are recorded. In this case the change of r would represent a series of plot size increments. The radius at which local
distinctiveness reaches maximum will be analogous to the compensatory area.
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clusions could be drawn from such an observation
(see Bartha 1991).

1V 2.3. Entropy of marginal distributions.

Based on presence/absence data, Juhdsz-Nagy
(1976) has suggested to apply entropy measures to
the marginal distributions in the data table for
each plot size, also discussed by Camiz (1993, this
volume). These distributions are local valence,
containing the x; x values (and local invalence con-
taining m - xjx) which show how many times a
species is present and absent, whereas the floristic
valence and invalence (containing xjk and m-xj,
respectively) reflect species richness of plots. The
Shannon-Weaver entropy estimates applied to
valences monotonically increase over plot size,
while the entropy estimates of invalences decrease
(Fig. 8). The small range of plot sizes, defined by
the intersection of entropy curves may be con-
sidered as a characteristic interval along the spatial
scale for that community. Many characteristic

Marginal

emropy floristic valence

local valence

floristic Invalence

local valence

Plot size

Figure 8. Idealized diagram showing plot size dependence
of marginal entropy estimates.

areas (mentioned above and to be discussed later)
are expected to lie within or at least close to this
plot size range (Juhdsz-Nagy 1984).

1V.3. Methods based on complex sets

The previous sections considered the behavior of
- each species independently. One step ahead along
the conceptual sequence involves measurement of
interaction between components of the basic set
(e.g., association between species or resemblance
between sample plots). Associations may be
restricted to a pair of species (most commonly) or,
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as we shall see in the discussion of Juhdsz-Nagy’s
most original models, to any subset or even the
complete flora. Central to Juhdsz-Nagy’s models is
a new concept of diversity applicable to suprain-
dividual objects, such as florulas, which has a clear
relationship to association.

1V3.1. Number of species combinations (florulas).
From the series of plots used in the artificial ex-
amples it is seen that at small size very few com-
binations of species (florulas) are manifested (no
species or either of the three). Increasing plots
will capture more different combinations, but
beyond a point the plots become "saturated" with
species. It means that the plots will tend to include
all or nearly all species of the community, so that
the number of species combinations will neces-
sarily decrease. If the plots are large enough in the
last sample of the series, all of them will include
every species. The existence of a maximum in this
series is a mathematical fact without direct
ecological reasoning.

Of course, all the possible combinations (i.e., 2",
including the "empty" florula) will not appear in
the sample, even if sample size would allow that
(except the theoretical situation of random com-
munities with infinite size and infinitely large
sample). The explanation is textural constraints
and the spatial associations of species. Mostly tex-
tural constraints dominate in determining actual
combinations (up to 80-99%, see Bartha 1992 for
explanation). If species A and B are negatively as-
sociated, combination {A,B} is very unlikely to
occur in the sample. They may be included in the
same plot, though, but this must be so large that
other species will also be included. Thus, the num-
ber of species combinations or florulas (NSC) is
useful at first glance to characterize some overall
compositional behaviour of species. This is im-
plicit in Juhdsz-Nagy’s (1967) work and was il-
lustrated first by Podani (1984). Pielou (1972, p.
338) also mentioned these combinations but
without further use in her work. The area at which
the maximum is obtained may be termed the maxi-
mum area of species combinations. Podani (1984)
examined this function in detail by comparing
field situations with randomly simulated counter-
parts. Bartha (1992) described the changes of the
maximum for NSC over succession and found that
difference between random expectation and actual
values increases with time: inappropriate (or
ecologically impossible) combinations do not ap-
pear in the sample. As he show-ed, increases in
species number do not necessarily lead to an in-
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crease of NSC as succession proceeds. In a simu-
lated example (Fig. 9) with 2, 4, 8 and 16 species
randomly dispersed we demonstrate the opposite
effect: NSC increases as species number increases,
although the maximum area of species combina-
tions remains fairly the same. Thus, the null situa-
tion and the realized NSC-s may differ
considerably, the latter is lower in reality. In
another example (Fig. 10) we show the depen-
dence of NSC on the commonnes and rarity of
species (i.e., texture), based on random spatial dis-
tribution for all species. Frequency (commonness)
of species and the size of maximum area are nega-
tively related, the higher the frequency the smaller
the area of maximum NSC.

"""1000
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IV.3.2. Florula diversity.

The NSC measure does not distinguish between
rare and common species combinations; they are
equally considered. In other words, NSC may be
the same for a sample in which all realized com-
binations equal in number and in another sample
dominated by a single combination. Such a dif-
ference becomes detectable if we apply a diversity
measure to the frequency distribution of florulas.
With a full analogy to species-diversity, Juhdsz-
Nagy (1967, 1976, 1984, see also Juhdsz-Nagy &
Podani 1983) suggested to use Shannon’s measure
to express florula diversity of the community. (In
this case the basic unit is the florula of a sample
plot rather than a plant individual, and the cate-
gories are species combinations rather than spe-
cies.) The formula of florula diversity is given by

A 2“
mHg(A,B,..,.N) =mlogm - 2 fsk log fsk

s=1

where fg is the frequency of the sth species com-
bination in the sample, m is sample size, k refers
to plot size, ag\d A,B,...N refer to n species. Math-
ematically, mHg(A,B,...,N) is the joint entropy of
species in the Xy data matrix. Graphically, this is
the envelope of the Venn complex (Fig. 4). The
change of this function over plot size shows a
peaked effect: the maximum area of florula diversity
corresponds to a plot size where the community
reaches its richest compositional pattern. The
chance that two plots have the same species com-
position is minimized at this scale point. It may be
fairly close to the maximum area of NSC. Juh4sz-
Nagy & Podani (1983) and Bartha (1992) ex-
amined florula diversity changes over succession
concluding the same as in case of local distinctive- _
ness. T6thmérész & Erdei (1992) observed in a
simulated sampling experiment that florula diver-
sity and the variance of the number of spe-cies per
plot tend to indicate the same scale in certain
types of pattern. Curves of the variance were less
smooth than florula diversity curves, showing that
florula diversity is not in a one-to-one correspon-
dence with inter-plot differences in species num-
ber. They also showed that potential bi- or
trimodality of the diversity curve, i.e. several levels
of scale, is caused by the existence of distinct
dominance groups (¢.g., very rare and very com-
mon species) in the community. Here we illustrate
the effect of the number of species (Fig. 11) and
abundance (Fig. 12) on the change of florula
diversity in simulated random communities.
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Figure 11. Plot size dependence of florula diversity in
four different random assemblages, each with 4 species.
Average species frequency ranges from 1.56 to 12.5 in the
assemblages.
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Figure 12. Plot size dependence of florula diversity in
four different random assemblages, with species number
ranging from 2 to 16.

1V.3.3. Associatum.

The dependence of interspecific association upon
plot size has long been known in plant ecology (cf.
Greig-Smith 1985, and many references therein).
Two species may be negatively correlated at one
scale point, positively at another, and may exhibit
no correlation at some third point. For measuring
the overall association of every species in the com-
munity, however, pairwise correlations and as-
sociations are less  straightforward. An
appropriate measure is the contingency informa-
tion of the 2" contingency table (Juhdsz-Nagy
1967), a quantity termed by Juhdsz-Nagy the as-
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sociatum. This is obtained as the difference bet-
ween pooled and joint entropy

mik(L) = mHA([L]) - mA(A,B....N).

A graphical illustration is the intersection part of
the Venn-diagram. If species positions are in-
dependent of each other, the theoretical value of
the contingency information is zero regardless
plot size. This case of complete spatial indepen-
dence can be approached as the sampled area and
sample size tend to infinity in a random com-
munity. In any real situation, however, with
limited areas sampled and relatively small sample
sizes, associatum will show a peaked effect (area of
maximum associatum) in the function of plot size
even if the community is completely random, be-
cause of incidental positive and negative associa-
tions among rare species. This is obviously an
artefact from an ecological point of view, there-
fore the deviation of an actual value from the as-
sociatum calculated for randomly simulated
counterpart communities (null models) should be
used.

Figure 13 illustrates the relationship between
three measures of scale dependence in plant com-
munities: local distinctiveness, florula diversity and
associatum, based on an example from a secondary
weed assemblage. As seen, the maxima of these
functions do not necessarily appear at the same
area. In fact, as Juhdsz-Nagy suggested, the order-
ing of maxima is also characteristic of the com-
munity (in this case the area of max. florula
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Figure 13. Plot size dependence of local distinctiveness
(LD), florula diversity (FD) and associatum (A) in a 3-
year old weed assemblage on a dump from strip coal-min-
ing (Bartha 1993). Note the resulting characteristic
ordering: Afor < Acomp < Aass.
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diversity is the smallest, close to the compensatory
area, whereas the area of maximum associatum is
much larger).

Random references for comparisons with actual
associatum values can be produced for any point
pattern either by Monte Carlo simulation or by
direct calculation of florula frequencies based on
the assumption of Poisson-distributed and spatial-
ly independent species patterns. Both methods
have their advantages and disadvantages. Direct
calculation is fast and easy, since the spatial in-
dependence assumption ensures that m’fk(L) 0
for all k, which in turn yields mHk(A B,..,N)=
mHk(L) (Juhdsz-Nagy 1984). It is simple to com-

pute local distinctiveness once the probabilities of

presence in a sample plot of a given area are
known for all species. But as mentioned above, the
theoretical case, being the result of idealized pos-
tulates, will not usually realize in actual situations
because of textural constraints, even if no spatial
dependence exists.

On the other hand, Monte Carlo simulation of
point patterns can be more realistic regarding the
size and the shape of the area sampled, but it re-
quires a lot more computing time, and the in-
cidental effects of rare species’ associations might
produce a wide variety of outcomes, which is quite
uncomfortable to use as a reference.

1IV.3.4. Expected resemblance (mean floristic
similarity).

The common problem with florula diversity and
associatum is their large sample size requirement.
Small samples are usually inadequate to faithfully
represent frequencies of species combinations oc-
curring at the given scale point, and the resulting
florula diversity estimate may be invariant over k.
If we do not wish to get a detailed analysis using
information theory models, there is a simpler al-
ternative way to express scale dependence of com-
munities, based on the concept of expected
inter-plot distance or resemblance (Podani 1984).
The starting point is that maximum florula diver-
sity implies maximum or nearly maximum inter-
plot distances or dissimilarities. Therefore, an
area for which inter-plot distances are maximum is
a good approximation to the maximum area of
florula diversity.

If we randomly locate random pairs of plots of a
given size within the community, we can calculate
a distance measure for each pair. A very large
number of such plot pairs, each pair located in-
dependently from the others, will then provide us

47

an estimate for the mean inter-plot distance at the
given plot size. Plotting the estimates over plot
size summarizes the spatial dependence relations
in the community (Fig. 14). A problem with such
independent pairs is that they are difficult to
specify in the field, although computer-simulated
sampling may help if digitized point maps are
available. For field data, a resemblance matrix bet-
ween plots may be calculated for each plot size,
and the average resemblance is calculated based
on the off-diagonal elements (e.g., Wildi & Kriisi
1992). (This method is less elegant, because every
plot contributes m-1 times to the average.) The
use of averages goes far back in the history of
phytosociology; there were quite few attempts to
define the minimum area of communities in terms
of average similarity or within-community homo-
geneity (Gounot & Calléja 1962, Moravec 1973,
Dietworst et al. 1982).
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Figure 14. Expected resemblance in the function of plot
size in a grassland community (solid lines) and its random
counterpart (dotted lines, from Podani 1984). a: Indices
disregarding value of d in the 2x2 contingency table. b:
Coefficients considering d.
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A crucial decision in this approach is the choice of
resemblance coefficient. The Sgrensen index and
related measures, which do not utilize cell d from
the 2x2 contingency table, increase monotonically
over area (Fig. 14a). Therefore, no objective
method can be defined to reveal any characteristic
areas from such curves which asymptotically ap-
proximate the maximum. In this direction we can-
not go farther than with species/area curves. On
the other hand, distance-related resemblance
measures (e.g., Euclidean distance for binary data
or the simple matching coefficient) will have some
extremum, showing the area where the sample
plots maximally differ (Fig. 14b). Simulation
studies indicated that this distance approach iden-
tifies a characteristic area closely approximating
maximum area of florula diversity (compare
Figures 4 and 5 in Podani 1984). This approxima-
tion may be extremely useful, for example, in plot
size optimization before clustering. For cover
data, however, no such extreme points were found,
the curves monotonically increased even for dis-
tances*. There is very little experience with the use
of expected resemblance, however, and further
studies are required to judge the usefulness of this
approach’.

IV.3.5. Partitioning of eigenvalues.

This method was originally proposed by Noy-Meir
& Anderson (1971). Covariance matrices (Cy) are
calculated for the species at each plot size k in a
grid, the large plots obtained from fusions of small
units, and then they are summed to get a total
covariance matrix. After an eigenanalysis of this
matrix, the eigenvalues, 4;, are partitioned into the
amount that each plot size contributed to that
value based on the following equation:

Ai=v Cyvi,

where v; is the eigenvector pertaining to A;, nor-
malized to unit length. vy Cx v; is then plotted
against block size. Peaks indicate block sizes con-
tributing much to that eigenvalue, thus reflecting
scale of multispecies ‘pattern to the extent the
eigenvalue accounts for the total variation. There
is a separate curve for each eigenvalue, so that as
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the authors suggest several independent scales of
pattern may be identified from the data. A
modification of this technique is due to ver Hoef
& Glenn-Levin (1989).

IV.4. Definitions based on sorted complexes

Sorted complexes are the conventional results of
multivariate analysis, such as ordinations and clas-
sifications. Although not typical, there are some
specific applications of multivariate procedures
that allow detection of scale in community pat-
terns.

IV 4.1. Analysis of three-way tables.

Camiz & Gergely (1990, see also Camiz, 1993, this
volume) suggested to analyze all the p data
matrices simultaneously by Escoufier’s (1973)
three-way scaling technique, STATIS. They found
that the position of data tables in the ordination
plane corresponds well with characteristic areas
detected by the Juhdsz-Nagy models: maximum
area of florula diversity was an extreme on a
second axis, whereas maximum distances from the
origin identify a plot size with maximum as-
sociatum. The proposition that extreme positions
in these ordinations directly correspond to charac-
teristic areas in every case needs confirmation,
however.

1V.4.2. Pattern analysis of ordination scores.

The essence of this strategy is to reduce the
"problem” with multivariate data to a univariate
situation via ordination of sampling units in a
transect. Species scores are thus replaced by the
corresponding ordination score [Galiano (1983)
used reciprocal averaging, Sterling et al. (1984)
applied principal components analysis, Gibson &
Greig-Smith 1986 used detrended correspondence
analysis]. Then, conventional methods of
univariate pattern detection (e.g., two-term local
variance methods, Hill 1973) are used to quantify
scales of community pattern. Galiano (1983) per-
formed this analysis separately for the positive and
the negative section of the ordination axes, giving
two pattern analyses for each axis. Ga-liano’s ap-
proach was strongly and rightly criticized by Gib-

4 Leps (1990b) has suggested to use mean Euclidean distances in blocked-quadrat analyses of transect data for detecting

community pattern.

-5 Mean similarity is somewhat related to the concept of 8 diversity commonly used in ordination studies as a measure of species
turnover along gradients: mean similarity is inversely related to species turnover (see Wilson & Shmida 1984, for review).
Studies employing various plot sizes provide inconsistent results on the relationship between 8 diversity and area (cf. @kland
et al. 1990), probably because of confounding effects of small scale pattern (detectable by changing plot size) and a larger
scale pattern (apparent only along the gradient). However, the range of plot sizes used for such purposes does not allow
direct comparison between the information theory functions and £ diversity. Such an evaluation is surely an important task in
the future in order to fill the gap between existing approaches to analyzing multi-species pattern.
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son & Greig-Smith (1986) on the ground that the
position of zero point in the ordination lacks
ecological significance.

Traditionally, applications of the eigenanalysis-
based methods discussed above have been almost
completely confined to transect data: blocks are
formed by successive fusions of neighbouring cells
in the transect. Block shape is therefore not con-
stant: duplication in size means duplication of the
length/width ratio of the block. Consequently, one
particular direction of variation will dominate the
analysis: characteristic distances rather than areas,
two different aspects of pattern (compositional vs
directional), are revealed. Transect techniques will

not be directly comparable to pattern analyses _

with information theory functions and expected
resemblance which do not emphasize any par-
ticular direction. However, the ordination
methods can just as well be applied to grids, a pos-
sibility which needs to be explored.

V. Discussion -

One objective of the present paper is to call atten-
tion of ecologists to scale problems in vegetation
studies. We are not the first, of course, see e.g.,
Wiens (1989), for a more general presentation of
the topic. Although it is simpler to rely on data
obtained at a single scale point, we repeatedly em-
phasize that, no matter how sophisticated the sub-
sequent analysis is, the success of any study of
pettern-related vegetation phenomena is condi-
tioned upon whether scale dependence is con-
sidered or not. We have to admit, at the same
time, that realizing, accepting and adapting this
requirement is difficult, and may prove too expen-
sive and time-consuming. In vegetation dynamics,
spatio-temporal patterns are analyzed, so that
considering both temporal and spatial scaling
simultaneously is a prerequisite, but relevant ex-
amples are few (Juhdsz-Nagy & Podani 1983,
Cz4rdan & Bartha 1989, Dale & Blundon 1990,
Bartha 1993)

We point out that the information theory models
described by Juhdsz-Nagy provide a sophisticated
means for analyzing small-scale community be-
haviour and for the evaluation of the role of each
constituent population in community structure. In
fact, complex biological patterns can be described
using community-, coalition- and single species-
level approaches simultaneously, and are treated
in a comprehensive way. The additivity of informa-
tion theory estimates as applied to contingency
tables offers an opportunity to decompose com-
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munity-level estimates to lower level components
without loss of any information. The methods
described in this paper, however, illustrated only
the fundamental concepts, there are many more
derived functions for assessing, for example, dis-
sociatum (i.e., the amount of information outside
interaction) and so on. The more thorough discus-
sion of this topic, however, was beyond the scope
of this review (interested readers should consult
Juhdsz-Nagy 1976, 1984). Although some of the
methods (associatum and florula diversity estima-
tion) require relatively large sample sizes, they are
well worth using because of the clear theoretical
foundation and fine details of results on various
aspects of texture and interaction. The other
procedures also have their relative merits, e.g.,
simplicity, ease of calculation, etc. They are
recommended in (pilot) studies to detect ap-
proximate plot sizes that can be used in subse-
quent classifications, ordinations, or in studies of
any functional community characteristics.

Juhdsz-Nagy’s approach by itself suggests that
there is no single scale point in plant communities
which could be useful in general. Every function
responds to different aspects (such as diversity or
similarity) of community texture and structure, so
it would be very naive to expect the existence of
any single characteristic area. The relative posi-
tions of characteristic areas pertaining to different
functions, the so-called characteristic ordering
(Juhdsz-Nagy 1967), provide a more detailed ex-
ploration of communities. It also demonstrates
that plant communities are more complex entities
than assumed by any simplistic approach.

This review of methods may not be complete, of
course, and we feel sorry if some important work
was forgotten (or remained unknown for us) when
preparing this paper. New methods may also ap-
pear in the vast literature of community ecology
any time. We think that more emphasis should be
placed in the future on comparisons between ac-
tual values and the corresponding random (null)
reference. Detailed investigations are required to
find analytical solutions in cases when it is pos-
sible at all. Monte Carlo simulations or the
bootstrapping technique could be used otherwise.
Comparisons between the diverging approaches
discussed in this paper are also badly needed, since
available comparative studies are restricted just to

" a few methods.
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