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Abstract. We examine the effects of changing plot size on
parameter estimation efficiency in multivariate (community-
level) ecological studies, where estimation efficiency is de-
fined in terms relating to the statistical precision of estimates
of all variables (e.g. species) in a data set. Three ‘efficiency
criteria’ for multivariate estimation are developed, and the
relationship between estimation efficiency and plot size ex-
amined using three field data sets (deciduous understory,
coniferous understory, and mire vegetation) from central
Canada.

For all three communities, estimation efficiency was found
to increase monotonically with increasing plot size. However,
relative gains in efficiency at larger plot sizes were offset by
substantial increases in sampling effort (enumeration time per
plot). Our results indicate that the largest plot size possible,
given the constraints of time, should be used for parameter
estimation in plant communities. Also, plots that are larger
than the mean patch size should be utilized when sampling
heterogeneous vegetation.

Keywords: Covariance; Eigenanalysis; Pattern; Sampling;
Spatial process; Understory; Variance.

Nomenclature: Scoggan (1978).

Abbreviations: PCA =Principal Components Analysis; VAR
= variance.

Introduction

It is important to distinguish between the sampling
objectives of pattern recognition and parameter estima-
tion when using plots to sample plant communities
(Kenkel, Juhdsz-Nagy & Podani 1989). Pattern recogni-
tion refers to the detection of the intensity and scale of
variation in populations and communities, and includes
the delineation of vegetation types and descriptions of

vegetation variation (Orléci 1978). This paper is con-
cerned with parameter estimation, which occurs when a
given population or community is ‘characterized’ in
some way. Examples from vegetation science include
the determination of species richness, and mean species
abundance or density, within a plant community.

Vegetation scientists have traditionally used the
minimal area approach when characterizing plant com-
munities. Minimal area is generally defined as the plot
size beyond which species richness fails to increase, or
increases only slightly. It is often determined through
interpretation of a species - area curve, but this approach
is fraught with problems (Barkman 1989). Gounot &
Calléja (1962), and later Moravec (1973), suggested
instead using similarity analysis (based on presence-
absence data) to determine minimal area. Here, a plot of
given size is said to be ‘representative’ if its floristic
composition is similar to that of other plots (of the same
size) taken from the same community (Barkman 1989).
Quantitative minimal area is defined when floristic
similarity is determined using quantitative rather than
presence-absence data (Roux & Rieux 1981; Dietvorst,
van der Maarel & van der Putten 1982). The implicit
objective of all minimal area approaches lies in deter-
mining the size of a plot necessary to obtain a repre-
sentative ‘picture’ of a plant community, rather than in
measuring the variation of abundance estimates. In this
paper we focus on sampling procedures for statistical
estimation, in which interest lies both in parameter
estimation and determination of the parameter’s vari-
ability.

Several investigators have examined the relation-
ship between the statistical precision of sample esti-
mates and plot size. However, these studies have only
considered the population or univariate case (i.e. the
estimation of a single variable, such as mean density of
a species); corresponding investigations for the commu-
nity or multivariate case (i.e. when a single sample is
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used to obtain estimates of more than one variable) are
lacking. For both univariate and multivariate studies, it
is important to consider any implicit sampling con-
straints on both plot and sample size (in this paper,
sample size refers to the total number of plots enumer-
. ated, and plot size to the areal extent of each plot). In
some studies, the total area or volume that can be sam-
pled is fixed: examples include biomass harvest studies,
and those utilizing soil cores (van Dyne, Vogel & Fisser
1963; Zeide 1980). In these cases smaller plots (or soil
core volumes) generally result in increased statistical
precision, since plot and sample size are inversely re-
lated (Green 1979, p. 132; Benoit, Kenkel & Cavers
1989). When interplot travel time is great, however, this
~ rule does not hold; Zeide (1980) describes a method for
* optimal plot size determination (univariate case only) in
such situations.

In vegetation science, it is more common for plot
size to be largely independent of sample size, and for
time constraints to determine the sample size. For the
population (univariate) case, the optimal plot size for
estimation is dependent upon the spatial distribution of
the species being enumerated (Bormann 1953; Wiegert
1962). For a randomly distributed species, all plot sizes
will result in equally precise estimates. For a species
showing a clumped distribution, however, greater preci-
sion will result when plots somewhat larger than the
mean clump size are used (Kenkel, Juhdsz-Nagy &
Podani 1989). In multivariate (community-level) stud-
ies, it is possible for each species to have a different
spatial distribution, and thus a different ‘optimal’ plot
size. A sampling program using a different plot size for
each species is clearly not feasible, however. What is
required instead is a means for determining a single
common plot size which results in (overall) high preci-
sion of estimates for all species.

. In this paper we develop measures of estimation
efficiency for multivariate studies. Greater estimation
efficiency is implied whenever there is an overall in-
crease in precision of estimates of all variables (spe-
cies), We also explore the relationship between plot size
and estimation efficiency using data from conifer under-
story, deciduous understory and boreal mire communi-
ties.

Measuring the efficiency of multivariate estimates

In developing measures of estimation efficiency for
our multivariate studies, we make the following as-
sumptions: (a) the community for which estimates are
required has been previously delineated; (b) sampling
units are plots located randomly within the community;
and (c) the number of 'plots enumerated is fixed by time

constraints, but the researcher has some flexibility in the
selection of plot size. With our objective and these
assumptions in mind, we develop three estimation effi-
ciency criteria.

Criterion 1

In univariate estimation, a lower sample variance
(8?) implies a more precise estimate of the mean or total
(Cochran 1977; Kenkel, Juhdsz-Nagy & Podani 1989).
In the multivariate extension, we consider the sum of
variances as our first criterion:

P
Ci = .21 7 (1)
=

The summation is over the p species recorded in the
sample. A lower sum of variances (C,) implies greater
efficiency in multivariate estimation.

Criterion 2

In the univariate case, the variance determines the
sample size required to obtain an estimate within spe-
cific confidence limits (Eckblad 1991). For the multi-
variate case, our second criterion involves determina-
tiorrof the variability of the species variances:

Cy = VAR(S%)_ @)

Lower variability in species variances (C,) implies that
a smaller range of sample sizes is required for estima-
tion purposes (Wiegert 1962; Eckblad 1991).

Criterion 3

Criteria C; and .C, consider only the species
variances. In the multivariate case, we must also con-
sider the covariances, which can be thought of as meas-
ures of interspecific ‘association’. Recall that in defin-
ing quantitative minimal area, a plot size is sought
which results in high compositional similarity among
replicate plots; such a plot size minimizes the detection
of community ‘patchiness’, which in turn implies an
overall reduction in species variances and interspecific
associations (Dietvorst, van der Maarel & van der Putten
1982; Barkman 1989). This was recognized over 60
years ago by Ramenski, who defined minimal area as
“that surface where the variance of abundance of all
species is below a certain level” (quoted from Barkman
1989, p. 93). Similarly, Goodall (1953) developed a
classification method in which vegetation groups are
defined such that within-group species associations are
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minimized. Suppression of interspecific associations is
also desirable for multivariate estimation, since a plot
size which detects patches or ‘pockets of associations’
within a community leads to inflation of species variances
(Greig-Smith 1952, 1983). The extent of interspecific
association can be measured as the amount of ‘structure’
in the species variance-covariance matrix 8. Covariance
‘structure’ can be determined through an eigenanalysis
of S (Gnanadesikan 1977; Orléci 1978). Recall that the
sum of eigenvalues equals the sum of the species
variances (diagonal elements of S):

p p
A=Y St 3

i=1 i=1

where summations are over the p species. When there is
no covariance structure (all off-diagonal elements of S
equal zero), the eigenvalues equal the variances. When
covariance structure is high (species associations high,
pairwise covariances large), the variance of eigenvalues
will increase since the first few eigenvalues will be
much larger than the others. In the extreme case, vari-
ables are completely redundant (covariances are at their
maximum); the first eigenvalue is then

P
2
AM = 2 87 )]
i=1
while the remaining p — 1 eigenvalues equal zero. It
follows that a criterion for measuring the covariance
‘structure” of S is the variance of the p eigenvalues:

C3 = VAR();). )

Note that zero eigenvalues are included in this calcula-
tion. For a given matrix S, C 3 is smallest when all the
eigenvalues are equal and covariances are zero, and
largest when equation (4) holds. A lower variance of
eigenvalues (C,) implies greater efficiency in multivari-
ate estimation.

The relationship between plot size and estimation
efficiency

To examine the relationship between plot size and
multivariate estimation efficiency, we sampled three
plant communities in central Canada. At each site, per-
cent species cover estimates were obtained for each of
seven plot sizes (a spatial process approach as described
by Podani 1984).
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Fig. 1. The relationship between plot size and the criteria
variables C|, C, and C; for three field data sets. -
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Fig. 2. The relationship between plot enumeration time (ex-
pressed relative to the time taken to enumerate the smallest
plot) and estimation efficiency (scores on the first principal
component axis). The values within the graph are plot sizes.

The plots were square with side lengths of 0.25,
0.50, 1.00, 1.50, 2.00, 2.50 and 3.00 m, and were nested
at éach of 20 random locations. The three communities
are described below.

1. Oak forest understory vegetation: Delta, Manitoba
(50° 11'N, 98° 23'W), This is a mature forest of Quercus
macrocarpa and Fraxinus pennsylvanica abutting an
oxbow of the Assiniboine River, 2 km south of Lake
Manitoba. Soil is a slightly acidic clay-loam. There
were 23 understory species, the dominants being Aralia
nudicaulis and Carex assiniboinensis.

2. Jack pine understory vegetation: Elk Lake, Ontario
(47° 50'N, 80° 27'W). This is a monodominant, fire-
regenerated stand of Pinus banksiana. Soil is a medium-
textured acidic sand. There were 18 understory species,
the dominants being Vaccinium angustifolium, Vacci-
nium myrtilloides, and Kalmia angustifolia.

3. Mire vegetation: Star Lake, Manitoba (49° 45'N, 95°
14'W). This is a weakly minerotrophic acidic mire (or-
ganic soil) dominated by Sphagnum spp. and Chamae-
daphne calyculata. There were 18 species. The area
sampled had a somewhat hummocky microtopography
and lacked trees, though Picea mariana occurred nearby.

Computations

. For each data set, a species variance-covariance
matrix S was computed for each plot size, and the sum
and variance of the species variances calculated.
Eigenanalysis was also performed on each matrix and
the variance of eigenvalues determined.

Results

For all data sets, the three criteria (C, - C5) show a
monotonic decrease with increasing plot size (Fig. 1).
Decreases are most pronounced at the smaller plot sizes,
indicating a sensitivity of smaller plots to small-scale
vegetation ‘patchiness’. While no absolute minima were
detected, the results do indicate that decreases in all
three criteria become less pronounced with increasing
plot size.

Incorporation of sampling effort
Determination of sampling effort

Field determinations of sampling effort were ob-
tained for the three study sites by measuring the amount
of time taken for two persons to set up and enumerate a
single plot of specified size. Enumeration times for the
three study sites proved to be very similar and were
therefore averaged.

Estimation Efficiency Index

In order to estimate sampling efficiency we require.
a composite ‘Estimation Efficiency Index’ which uti-
lizes all three of the criteria variables (C;, C, and C;).
Because the criteria variables are measured on different
scales, a composite index cannot be obtained through
simple averaging. Instead we computed pairwise corre-
lations between the criteria variables over the seven
plot sizes, and subjected the resulting correlation matrix
to a Principal Components Analysis (PCA). This is
justified since the three criteria are highly correlated
across plot size (see Fig. 1); indeed, for all three data
sets > 99.5% of the total variation was explained by the
first principal component. The scores of the plot sizes
on the first principal component defined the composite
index of ‘estimation efficiency’.

Results
For each data set, the relationship between estima-

tion efficiency and sampling effort (plot enumeration
time) is monotonic increasing (Fig. 2). Thus greater
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estimation efficiency can always be achieved by in-
creasing plot size. However, the results also indicate
that for larger plot sizes any increase in estimation
efficiency is offset by substantially greater sampling
effort.

Discussion

In both population and community studies, an in-
crease in sample size invariably results in improved
estimation efficiency (Eckblad 1991). The ‘effective’
sample size may be increased either by enumerating
more plots, or by increasing the size of each plot. Smaller
plots are more likely to detect small-scale vegetation
patches; this results in higher species variances and
covariances and a concomitant decrease in estimation
efficiency. It follows that plots somewhat larger than
the mean patch size will result in increased estimation
efficiency.

This parallels results showing that the minimal area
of a plant community becomes greater with increasing
scale and heterogeneity of vegetation patches (Barkman
1989), and with increasing species richness or decreas-
ing dominance (Dietvorst, van der Maarel & van der
Putten 1982). In practice these are also important con-
siderations in selecting a plot size for statistical estima-
tion, since plant communities are rarely homogeneous.
Compositional heterogeneity -in vegetation may reflect
.environmental heterogeneity, or be the result of biotic
factors such as clonal growth and interspecific species
interactions.

Our results indicate that estimation efficiency in
community-level studies can always be improved by
increasing plot size. However, it is also shown that
while large increases in estimation efficiency occur at
small plot sizes, only slight increases in estimation
efficiency are observed at larger plot sizes. When sam-
pling effort (enumeration time per plot) is incorporated,
the decrease in improvement of estimation efficiency
with increasing plot size is particularly apparent (see
Fig. 2). In practice, we recommend that researchers
utilize the largest plot size possible given the constraints
of sampling time and effort. When sampling heteroge-
neous vegetation, we recommend that plots that are
somewhat larger than the mean size of vegetation patches
be utilized.

We have not yet considered the effect of changing
plot shape on estimation efficiency. For the univariate
case, it has been shown that elongated (rectangular)
plots result in more statistically precise estimates
(Bormann 1953); the same result can be expected for
community-level studies. This will occur since rectan-
gular plots are more likely to ‘cross over’ than detect

>
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vegetation patches. This has the result that a greater
proportion of the .community’s species are included
within a single plot (Kenkel, Juhdsz-Nagy & Podani
1989). Rectangular plots may therefore be particularly
useful when sampling het_erogenedus‘ vegetation given
an objective of abundance estimation. Further studies
should be undertaken to study the relationship between
estimation efficiency and plot size - shape in multivari-
ate sampling.
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