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Abstract

The use of mathematical methods based on Shannon’s entropy function is proposed for the evaluation of
the consequences of sampling unit size and for the study of vegetation succession. The concept of diversity is
extended to sets of phytosociological relevés under the term florula diversity. It is shown that Shannon’s
entropy as well as two other related characteristic functions can express the local behaviour and overall
relationships of species. Characteristic areas are defined in terms of the maxima and minima of these

functions. Several study areas yielded the data which are used in the examples. Some theoretical problems of

Introduction

In an optimal phytosociological survey one
should consider both spatial and temporal charac-
teristics of plant communities. Spatial aspects, es-
pecially the different areas characteristic of the
communities being studied, are of central impor-
tance, since they should be considered in selecting
the sampling design and the method of data collec-
tion. Although it is generally accepted that the con-
clusions drawn from a vegetation study are influ-
enced by the sampling design, the optimization of
sampling is all but ignored in the phytosociological
literature. Very few papers (e.g., Juhasz-Nagy,
1967, Moravec, 1973; Fekete & Szo6cs, 1974; and
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Matthews, 1978, 1979) actually treat methods for
the evaluation of the influence of sampling.

The information necessary for the evaluation of
sampling can be obtained if successive changes are
applied to the sampling procedure. These changes
can usually be ordered into a well-defined series,
such as the enlargement or the elongation of sample
plots, the increase of the number of sampling units,
etc. These series will be referred to as spatial pro-
cesses. This definition differs from that of statistical
ecology, where stochastic changes for generating
spatial patterns are traditionally termed as spatial
processes (cf. Chiff & Ord, 1981). However, the
different terminology should not cause confusion;
since the generation of spatial patterns is not dis-
cussed in this paper.

Temporal vegetation processes are never inde-
pendent of spontaneous processes (e.g., propaga-
tion of plants) taking place in topographic space.
Succession is therefore both a spatial and temporal
process and will be termed as ‘spatio-temporal’ to
clarify the terminology. In the sequel, the term ‘spa-
tial’ will be restricted to processes related to samp-
ling.
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The study of spatio-temporal vegetation changes,
based on permanent plots, is very extensive (see
e.g., Falinski, 1977; van der Maarel, 1980). The’
difficulty with these studies is that the sampling
properties are not considered, and usually a single,
more or less arbitrarily selected plot size is used.
This practice, however, can be criticized, since there
is no guarantee that the plot size chosen will yield a
sufficient and theoretically justifiable data base to
reveal the successional trends. Whilst several mod-
els exist to describe and analyze succession (e.g.,
Horn, 1975, 1981; van Hulst, 1979; Gittins, 1981;
Orléci, 1981; Usher, 1981), spatial and spatio-tem-
poral processes are not examined at the same time
on the same object. The indirect mathematical me-
thods applicable to the joint study of these pro-
cesses have received little attention so far.

The present paper is an attempt to resolve some
primary problems of the study of processes in vege-
tation analysis. The functions used are based on
well-known information theoretical considerations
(Kullback, 1959; Pielou, 1977; Orléci, 1978; Feoli et
al., 1982). The most fruitful concepts of diversity
are extended to sets of species, i.e., the floras of
sampling units (The terms ‘sampling unit' and
‘sample plot’ will be used interchangeably. ‘Sample
size’, as a standard statistical term, will refer to the
number of sampling units) or relevés (called floru-
las). The methods are applicable to floristic (binary)
data only, but their extension to other types of data
is conceivable. A more formal and mathematically
explicit treatment of the topic is given elsewhere
(Juhész-Nagy, 1967, 1976, 1982).

Materials

The discussion of the proposed techniques relies
on results from five data sets. One of these comes
from a study area situated at the edge of the
Ravnako Alpine Basin near summit Vichren in the
Pirin Mountains, Bulgaria. The sampling was
completed in late June, 1962, and was based on ten
sets of circular plots. The sampling radii are
specified in Table 1. Each set contained 200 sam-
pling units located at random in the study area.
Only binary data were recorded. The community is
a simple stand of a Saxifraga stellaris syntaxon,
containing eight vascular species (Ranunculus
montanus, Nardus stricta, Saxifraga stellarius, Pin-

guicula vulgaris, Viola biflora, Vaccinium vitis-
idaea, Carex fusca, and Deschampsia caespitosa).
This stand (at elevation 2400 m) is a depauperized
form of a richer community of more than 100 spe-
cies (including cryptogams) which occurs below
2200 m. Its syntaxonomic position is unclear, since
it consists of a peculiar mixture of a transitional

- moor and a spring swamp (‘Quellflur’). Juhasz-

Nagy (1963) discusses these problems and presents
some results of statistical analyses.

Additional surveys were carried out between
1965 and 1967 based on a similar design in com-
munities from three isolated locations in Hungary.
These are: Puccinellietum limosae (Mata, Hor-
tobagy National Park), a degraded stand of Narde-
tum strictae (Haromhuta, Sator Mountains) and
Alopecuretum pratensis (Rivaly, Beregi-sik). The
number of species was 29, 34 and 73, respectively.
The sample size was 256 in all cases.

For succession studies two sites at Nagycsere,
Hungary, each of 100 X 200 m? size, were exam-
ined. The sites were cleared in the winter of 1956 for
sylvicultural purposes. The complete plant cover,
including roots, was removed. For a number of
reasons, both sites were subsequently abandoned
for several years. Sampling began in 1958 and
ended in 1962, and resumed againin 1967 and 1968,
after the establishment of two Quercus robur nur-
series. Sampling was carried out twice a year, in
mid-May and early September. Quadrats of .1 X .1,
2X.2,.3X.3, ...,10 X 10 m2sizes were randomly
placed at both sites. All plots were marked by co-
loured iron bars to ensure exact correspondence in
their positions during the years of sampling. The
most characteristic type of succession in this region
is through the sere: Brometum' tectori (annual
grassland) — Festucetum vaginatae (pérennial
grassland) — Festuco vaginatae - Quereetum robd-
ris (a forest-steppe climax). There are, of course,
several other possible seres. Differences between
the two sites are attributable in part to the fact that
they are surrounded by different forest plantations
(Quercus robur and Robinia pseudacacia). The
present study is concerned only with the Brometum
tectori stage.

In addition to these two sites, a nearby mature
stand of Brometum tectori was sampled with sim-

ilar plot sizes on one occasion in May, 1968. This

was done to contrast the early phases of succession
with a well-developed stand of the community.



Basic concepts

The diversity of a community is usually defined
based on the assignment of plant individuals to
taxa, phenological and life form types, or other
classes. Radford er al. (1974) give a list of the var-
ious possibilities. In the simplest situation, diversity
is defined as the number of taxa, life form types,
etc., occurring in the whole community or within a
unit area (i.e., the entropy of order one, cf. Rényi,
1961). In the ecological literature, diversity is often
expressed as a function of the number of categories
and the number of individuals within each category
(see Pielou, 1975, 1977; Green, 1979, and Grassle et
al., 1979, for details). A literature review would
certainly support our contention that the use of
these measures is largely restricted to the study of
taxon/individual diversity. However, as Dévai et
al. (1971) have pointed out, this is just a special case.
Another family of diversity functions may be ob-
tained if the basic unit is not the individual but the
set of all categories found in a certain sample area.
Such a supraindividual entity is, for example, the
florula of sample plots. It will be shown that con-
ventional diversity measures, in particular Shan-
non’s function, can be used to calculate the su-
praindividual diversity of communities if a suffi-
cient number of plots are available.

It is noted that there have been several other
attempts in the past to express community varia-
tion over an area or environmental gradient. These
methods generally employ resemblance functions
instead of diversity measures. The ‘beta diversity’
proposed by Whittaker (1967) is the amount of the
species turnover from one end of a gradient to the
other, and is in fact a function of inter-plot simi-
larity. Another technique due to Gounot & Calléja
(1962) and Moravec (1973) takes the average of the
non-diagonal elements in the resemblance matrix

of sample plots as an indicator of community hete-,

rogeneity. The averages obtained at different plot
sizes are used in an attempt to find the ‘minimal
area’ of the community.

/

Joint entropy as ameasure of simple florula diversity

The concept of florula diversity is illustrated with
two species, which is the simplest case. The joint
entropy of species A and B is
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mH(A, B)=mlogm-aloga-blogh-clogc
-dlogd (1

Symbolsa, b, cand d correspond to the notations
of a2 X2 contingency table. m=a+ b+ c+dis
sample size. In this case (1) can be considered as the
weighted estimate of Shannon’s entropy for the set
of possible combinations of the two species in ques-
tion. The generalization of (1) to s species is given
by the formula

mH(A,B.,...,S)=mlog m - . iﬁl filogfi ()

where f is the frequency of the kth species combi-
nation in the data set and w = 2° is the number of
possible species combinations (different potential
florulas). The base of the logarithm is arbitrary, but
for binary data the use of log, seems most appro-
priate. Log will always imply log, in the sequel.
Function (2) will be called the simple florula diver-
sity, since several more complicated alternatives
(e.g., Rényi’s entropies of higher orders, see Rényi,
1961) are available to express uncertainty regarding
the species composition of relevés. Furthermore, it
is simple because no grouping or deletion of species
is involved. It will be shown later that changes in
florula diversity with changing plot size can be used
to detect overall pattern in vegetation.

If all florulas are of the same composition, that is
if one particular florula occurs m times, the florula
diversity is zero. When all florulas are different, i.e.,
Ji is never greater than 1 for any %, the florula
diversity reaches its local maximum:

max {mH(A,B,...,S)} =mlogm=mH e

Since mH(A, B,. . .,S)is a function of s, for c8mpar- =
ative purposes it may be appropriate to use the
relativized form, ’

mV(A,B, ...,S)=mH(A,B,....S) mH=
= 1.0 - (2 fi logfy) / (mlog m) 4)

which will be termed the florula evenness. 1t ranges
from 0 to 1, indicating minimum and maximum
florula diversity respectively. It should be noted
that the florula evenness estimates for two com-
munities are comparable only if the sample sizes
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(m) are equal, since evenness estimates are depend-
ent on sample size (cf. Pielou, 1975).

Pooled entropy as a measure of local distinctiveness
Shannon’s entropy function may be used to esti-

mate the uncertainty of the event that a particular
species occurs in a randomly chosen relevé. If spe-

cies / is present in n; of m sampling units, its en- '

tropy estimate is

mH;=m log m - n; log n; - (m-n;) log (m-n;)
)

Thus, (5) yields valuable information concerning
the local behaviour of species I. When mH; is zero,
i.e., it is present in, or absent from, all sampling
units, species / obviously does not distinguish be-
tween relevés. Increasing values of mH; indicate a
stronger preference of the species to some relevés.
The maximum value of (5) is m (provided that the
base of the logarithm is 2), and will occur when the
species is present in exactly half of the plots.

Summation over all species will give the pooled
entropy estimate,

mH(L) = mH, + mH,+ ...+ mH;+ ...+
+ mH;=smlogm- X (n; log n; + (m-n;) log
(m-n;)) (6)

which wil be termed the local distinctiveness of
species occurring in the study area. Formula (6) is
used under a variety of names in the literature on
numerical classification, e.g., information content
(Cormack, 1971; Williams et al., 1969) or total in-
formation (Sneath & Sokal, 1973). Van der Maarel
(1979) argued that it is rather a heterogeneity mea-
sure; Podani (1980) used the term preferent1al in-
formation heterogeneity.

Contingency information as a measure of multiple
association

In information theory the association between
two species may be expressed in terms of their
mutual information:

ml(A,B)=mlogm +aloga+blogh+clogc+
+ dlog d - (a+c) log (a+tc) - (b+d) log (b+d) -
- (a+b) log (a+b) - (c+d) log (c+d) @)

The higher its value the greater is the information
obtained on species B by determining the score for
species A, and vice versa. Function (7) does not
distinguish between negative and positive associa-
tions; it is an absolute measure.

In general, the mutual information of s species
(denoted by mi(\)) is termed the contingency in-.
formation involving a table A containing 23 cells.
This quantity may be simply derived by subtraction
of mH(A,B,. ..,S)from mH{L):

ml(\) = mH([ L)) - mH(A,B....,S) ®)

To distinguish between the two species case for
which association has been used and the general
situation, mI(\) will be termed the associatum of s
species. It follows from (6) and (8) that

mI(\) = (s-1) mlogm+ 3 f, log f, -
- 3 (n; log n; + (m-n;) log (m-n;)) )]

For the sake of simplicity in writing formulae the
following notations are introduced:

3 n;logn; =x , (10)
3 (m-n;) log (m-n;) =% (11)
and

x+x=X , (12)

Spatial processes

In vegetation studies the sampling design i is. char-
acterized by the size, shape, number and-arrange- .
ment of sample plots, and the types of déta collect<
ed. The successive alteration of one or more of thé
first four characteristics represents a process in real
space. This process is static in time and artificial.
For example, the elongation of square sampling
units to longer and longer rectangles with the same
area constitutes a process related to shape. In plot-
less sampling one can readily define similar pro-
cesses. In case of a multiple nearest neighbour meth-
od (Williams er al., 1969) the increase (or decrease)
of neighbourhood radius constitutes a spatial pro-
cess. The present paper is concerned only with spa-
tial processes related to changing sample plot size.



However, the methods proposed here are also ap-
plicable to the others without much modification.

Entropy estimates are unbiased in a statistical
sense only if the location of sample plots follows a
random arrangement. Let U, be a set of distinct
points randomized over the community to be
sampled. If a series of plots (of a given shape) of
sizes ay, ay,. . ., a;. . .,a, are arranged around each
point such that ¢; < a; ; , for all j, and a,, is not
greater than the size of the sampled area itself, w + 1
sets of sampling units are obtained:

Uy, Up. .2 Uj. . .U,

Each set consists of m units. In this way the sam-
pling yields a three-way, species by size by point
matrix. All functions discussed earlier must be in-
dexed by jto indicate their dependence on plot size.

Characteristic areas

In measuring taxon/ individual diversity, the size
of sample plots is a matter of statistical estimation.
The larger the plot size the more precise the esti-
mate will be, provided that the sample size remains
unchanged. If the plot size is constant, an increase
in sample size will result in higher precision. In case
of .supraindividual diversity, however, the inter-
changeability of plot and sample size no longer
applies. An increase in plot size increases the prob-
ability of finding a given species within the plot;
therefore, the florulas (i.e., the basic units them-
selves) are subject to change. These changes are
influenced not only by the number of species and
individuals but also by their spatial pattern and the
associations between them. Consequently, the rela-
tionship between plot size and simple florula diver-
sity is characteristic of the plant community. Figure
1 displays actual changes in simple florula diversity
with changing plot size in Nardetum strictae and
Alopecuretum pratensis communities. Table 1
summarizes the results for all three characteristic
functions for the Ravnako Basin, showing that lo-
cal distinctiveness and associatum also have maxi-
ma and minima. An idealized case for the three
functions is illustrated in Fig. 2. The maxima and
minima of these functions indicate particularly im-
portant plot sizes, termed the characteristic areas.

In fact, the concept of characteristic areas can be
generalized to any other measures that are mean-
ingful in reflecting some important property of
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Fig. 1. Thechange of florula diversity by plot size in a) Nardetum
strictae and b) Alopecuretum pratensis.

e

characteristic functions

plot size

Fig. 2. An idealized diagram for three characteristic functions
related to plot size. a) florula diversity, b) associatum, ¢) local
distinctiveness.

Table 1. Values of three characteristic functions for dala‘(rém

Ravnako Basin. e
Sampling Characteristic functions (in bits) )
radius : -

(in meters) mHA(LD mi;(A.B.....5)  mi;(X)
0.0 353.16 326.00 27.16
0.1 729.36 586.69 142.67
03 869.87 615.24 254.63
0.5 885.36 656.13 229.23
0.7 879.10 709.01 170.09
09 700.86 538.77 162.09
1.1 344.53 319.47 25.06
1.3 168.51 164.61 3.90
1.5 60.00 60.00 0.00

1.7 0.00 0.00 0.00
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vegetation. A good example is the analysis of the
spatial pattern of a single species through variance
estimators (cf. Greig-Smith, 1952, 1964) or infor-
mation theory divergence measures (Orléci, 1971;
Feoli et al., 1982) derived from various plot sizes.
For multi-species populations, Gounot & Calléja
(1962) and Moravec (1973) suggested the use of the
average resemblance of plots. The multiple pattern
analysis technique developed by Noy-Meir &
Anderson (1971) is based on the eigenanalysis of a
series of resemblance matrices obtained at different
plot sizes. Characteristic areas may be defined in
many ways depending on the selected characteristic
function. Also, there are many definitions in the lit-
erature without objective justification, according to
the principles of different phytosociological schools.
For these reasons, it is necessary to include a de-
tailed discussion of characteristic areas based on
florula diversity and related measures.

Minimum area
It was shown above that the lower and upper
bounds for simple florula diversity are given by

0<mH(A, B....S)< mlogm (13)

The plot size at which florula diversity and the
local distinctiveness become 0 will be termed the
minimum area, a,,;,,, of the community. The min-
imum area of a species 7 is defined as the smallest
plot size at which the species is found with probabil-
ity 1. Clearly, a,,;,, cannot be smaller than the larg-
est of the s minimum areas. Consequently a,,,, is
trivial (i.e., equals the study area) if there is at least
one species represented by a single individual oc-
curring at the edge of the study area. In other situa-
tions, a,,;, may be affected by the spatial segrega-
tion of negatively associated rare species.

The above definition is very conservative since it
requires the complete identity of all florulas. Em-
phasis is placed on the rare species, which are usual-
ly regarded as being unimportant in defining char-
acteristic areas. The traditional definitions are not
so restrictive; the minimum area is defined as the
smallest plot size which ‘sufficiently’ represents the
characteristic structure and floristic composition of
the community (cf. Cain & Castro, 1959; Goodall,
1961). In other words, an increase in the minimal
area does not yield a ‘significant’ amount of addi-
tional information (Greig-Smith, 1964). Unfortu-
nately, none of the methods developed is fully ob-

jective and generally applicable in determining such
representative areas.

It is noted that the area of minimum associatum
is not necessarily equal to a,,,,. As the data in
Table 1 show, this area may be smaller if by chance
mH; ([L]) = mH|(A, B,. . .,S) > 0. Despite this pos-
sibility, the area of minimum associatum is not
discussed in the sequel.

Maximum areas

The objective of determining the minimum or
representative area is to find quadrat size such that
arelatively homogeneous sample of the community
can be obtained for descriptive purposes. However,
this characterization cannot be complete without
considering another sample which represents the
same community, but in its richest and most diverse
development. This sample may be obtained by de-
tecting plot sizes with maximal charcteristic func-
tions.

Maximum area of florula diversity

The maximum of simple florula diversity re-
quires the most detailed discussion, since inequality
(13) may not be fulfilled in special cases. If m < w
and, hence, log m < s, the inequality is satisfied.
However, if m = w, when log m = s, and the possible
florulas have an equifrequency distribution such
that f, = m/w for all k, the maximum will be simply
mH;= ms (in bits). It is to be noted that m > wis 2
non-realistic condition since w is usually a large
number (recall that w = 2%). Therefore it is very
unlikely that this condition will ever be satisfied if,
say, s > 10. Furthermore, the equifrequency distri-
bution necessary to reach the maximum is even less
likely to occur. Thus the upper bound ms, though
sound in theory and attractive in its simplicity, can
normally be regarded as an overestimate of some
more realistic maximum. In trying to find such a
maximum, it should be noted that the vast majority
of potential florulas cannot manifest themselves
empirically, that is, their frequency is zero. If we
consider () as a random variable,

where w jis the number of different empirical floru-
las with non-zero frequencies at sampling unit size .
a;, a better approximation of the upper bound is -
given by

mH;(A,B.....S)< w;log w; (14)



The related florula evenness is

mV (A, B, .. +S)=mH{(A, B, .. +S)/ w;log wy) (15)

Note that (14) is the local maximum at the
given sampling unit size. Beyond this, however,
the global maximum over all plot sizes is of
considerable interest. The sampling unit size where
the global maximum occurs is the maximum area of
florula diversity, a,,,. For the sake of simplicity we
assume that there is only one ag,, (i.e., the curve is
unimodal) and that this maximum is represented by
a point rather than an interval (as in Fig. 2).

‘For small enough sample plots some combina-
tions consisting of a few species will have high
frequency values; this will result in low florula
diversity. By increasing plot size to a certain point
a; = ag,,, the number of species in each plot will
continue to increase. In this way the previously
similar relevés will become more distinct and
mﬁj(A,B,. ..,8) will approach a global maximum.
As the sampling unit size is further increased, the
number of species in each relevé will also increase,
and differences between relevés will again begin to
disappear. This process ends when all sample plots
have the same species composition. To clarify this
point let us suppose that s is an even number and
consider the following set of relations for binomial
coefficients,

(;) < (;) <.< (s/sz) > > (j)

(16)

The number of possible combinations is maximal
when s/2 elements are taken from s elements. It
~ should be pointed out that the relations

wy< w; <‘..<wj>..:>ww (17)

are satisfied if the sampling starts with very small
plots and ends with sufficiently large ones. This
process may be regarded as a special partitioning
process of the combinatorial type. It is the reason
why truncated lognormal distributions frequently
give a close fit to empirical data, as in Fig. 3 (see
also Aitchison & Brown, 1966; Pielou, 1975).

In more complicated cases there may be a mix-
ture of two (curve b, Fig. 1) or more lognormal
distributions. Whenay;,, is not a point but an inter-
val, equation (2) implies that it is likely that certain
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Fig. 3. Relation between florula dlversny and plot size in Pucci-
nellietum limosae.

species combinations will have persistently high
frequency values within this interval (curve a, Fig.

1).

Compensatory area
Let us now examine some properties of local
distinctiveness. Estimator (12) has limits

smlog(m/2)< X;<smlogm (18)

From (6) and (18) it follows that
<mHA(L)<sm R (19)

Bounds are given in weighted bits for both rela-
tions. The lower bound in (18) is obtained only in
the unique case when X;=%X;=0.5(s mlog(m/2)).
In this case, all species would be represented by an .

m/2 Raunkiaer frequency, such that .= =

n;=m-n; =m|2 . (20)

This corresponds to what might be termed the ideal
compensatory area, with all species showing an
equifrequency distribution. This is evidently an un-
realistic case since species normally show a high
degree of variation in their pattern of commonness
and rarity. Hence the upper bound in (19) is an
overestimate of some more realistic value. Empiri-
cal results show that X; follows a skewed U-distri-
bution under the present sampling conditions.
Therefore mH ([L]) always has a unique peak. The
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point where local distinctiveness reaches its empiri-
cal maximum will be called the compensatory area,
denoted by a,,,,,,

The discussion of compensatory area would not
be complete without considering an interesting
study by Williams et al. (1969). They examined the
dependence of information content (the value of
function (6)), on clump size in point clump systems.
The clump size at which function (6) is maximal can
be thought of as the compensatory clump size in a
multiple nearest neighbour analysis.

The area of maximum associatum

Empirical results suggest that function mTj()\)
has at least one maximum, at which the highest
interspecific associations exist. This plot size cor-
responds to the area of maximum associatum, a ..
If mﬁj (A,B,...,S) has two maxima then m‘I \)
usually has two also. Thus a(l) and ags)s may be
interpreted at first sight as areas dommated respec-

tively by negative and positive associations.

Characteristic ordering

When characteristics areas have been determined .

for a given community it is interesting to examine
their positional arrangement. In the case of very

. simple communities (see Table 1) the following re-
lations hold,

Qs <acomp <aﬂor <amin (21

Such an ordering of characteristic areas will be
termed the characteristic ordering of a given com-
munity. Sometimes, of course the relation <
should be replaced by <, especially if the difference
between two characteristic areas is very small.

If the curve ome (A,B,....S)and/orml, ()\) 18
not unimodal the chara.ctcrlstlc ordering becomes
fairly complicated. The ordering,

Ezlsi'<a o <comp<a El?s<aﬁ) <a min (22)

may frequently occur, for instance in some types of
meadows. Of course, the possibility of other order-
ings cannot be excluded.

A satisfactory interpretation of any characteris-
tic ordering is very difficult. A combination of dif-
ferent approaches (comparison of classifications,
simulation of patterns, topological study of plant

distributions, etc.) may help in this regard. It is also
difficult to predict when to expect simple ordering
versus a more complicated one. A hypothesis can be
put forward by distinguishing some extreme cases,
e.g., .
(1) The community is open

(2) The community is closed
" (2a) Patches are presumably classifiable

(2b) Patches are presumably not classifiable

For the simply structured cases (1 and 2a) we can
assume that a simple characteristic ordering exists.

/

Spatial processes and succession

In succession studies it is of considerable interest
to investigate the behaviour of functions(2), (6) and
(9). In the simplest case changes in the values of
these functions can be studied in a primary succes-
sion using a fixed plot size. However, the result of
such studies would be misleading if spatial pro-
cesses were not taken into account; an investigation
including both temporal and spatial processes has

~ much more relevance.

Letzyy_,. . ydenotethepointintimeat which
the 2th sampling was carried out. The characteristic
functions will have a second subscript ¢ to denote
time. The result is best shown in three dimensions,
but the process is sufficiently illustrated as a series
of curves (Fig. 4). These diversity curves were
calculated using the May data for the first study site
at Nagycsere. Only three points in time (1958, 1962,
1967) will be considered to simplify the illustration. ¢
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Fig. 4. The change of florula diversity curves during succession
in a stand of Brometum tectori.



The interpretation of Figure 4 is not difficult. Let
us first examine the florula diversities at plot size a,)
(‘point quadrat’). It is striking that

mHy; (A.B.....S) < mHy, (4,B...8) <
mHy; (A, B.....S) (23)

This ordering results because many plots contain
no species in the early stages of succession, which
leads to low florula diversity. As succession con-
tinues the open areas are gradually colonized so
that the probability that the point quadrat fails to
touch an individual decreases. This results in higher
florula diversity. Ordering (23) reflects temporal
changes in pioneer communities. This is actually
the case in the early Brometum tectori stage in
grassland succession. It is likely that the ordering

becomes more complicated and less interpretable

later.

The role of plots lacking plants is of course just
one factor to consider. During succession, especial-
ly in pioneer communities, the number of species
usually increases over time. There is also evidence
that species/individual diversity increases (e.g.,
Loucks, 1970; Auclair & Goff, 1971; Pineda et al.,
1981) at least during the early parts of the succes-
sional sere. These factors result in higher florula
diversities at maximum areas. The results also sug-
gest that the minimum and maximum areas become
smaller as succession progresses. Figure 4 shows
that as species number and total cover increase, the
sampling unit size at which maximum and min-
imum florula diversity occur decreases. The results
for a mature stand of Brometum tectori (see Fig. 5)

m.s, S@F— A
1967—C-@-5 4

1962 —O—@—+F - A

1958 — v = A

4] 1 4 L] 16 25 36 49 64 81 100m?
plot size

Fig. 5. The characteristic ordering in three points of time during
succession in Brometum tectori. The uppermost row (m.s.)
indicates the characteristic ordering obtained for a mature
stand of this community. Symbols identify characteristic
areas as follows: O: g, , ®: a
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Fig. 6. Seasonal changes of characteristic areas in Brometum
tectori. See Figure 5 for explanation of symbols.

support this in the case of afor and, for 9omp (not
shown in Fig. 4). The area of maximum associa-
tum increases slightly through time. The minimum
area is considerably larger than the other character-
istic areas. This feature may be explained by rare
species.

Figure 5 also illustrates the characteristic order-
ing. Relation (21) holds true indicating its general
validity for simple communities (cf. Table 1). It is
also striking that ag,,., 4,,,, and a,, become more
similar over time, while a,,,;, remains considerably
larger. This ordering is also valid for the autumn
data (see Fig. 6) although two characteristic areas
are larger, and two others smaller, than in the
spring. This seasonal oscillation is attributable to
differences in the physical appearance of spring and
autumn vegetation.

Results for the second study site at Nagycsere
(not shown) are much more complicated. Florula
diversity and associatum usually have two maxima,
sometimesthreeasin m?ig()\) forautumn, 1962. The
ordering of characteristic areas varies from year to
year, and the positional transformations are rather
difficult to interpret. The reason is perhaps the
extensive spread of ruderals (e.g., Lamium purpu-
reum) since 1960. Further analysis will be required
to clarify this problem. o

-

Discussion

The present paper shows that the joint informa-
tion of species in a binary phytosociological matrix
has meaning in reflecting the compositional diversi-
ty within sets of relevés. Results based on actual
data indicate strong dependence of simple florula
diversity on plot size. Similar relationships are
shown between plot size and two other information
theoretical functions. The sampling unit size at
which a function is maximal or minimal represents

100 m2



a characteristic area of the community with respect
to the function. Four characteristic areas seem to be
of importance: minimum area, maximum area of
florula diversity, compensatory area and maximum
area of associatum.

The minimum area is the smallest plot size at
which all relevés would contain all species present
in the community stand being examined. This is
mostly influenced by the spatial distribution of rare
species. The maximum areas are ecologically more
meaningful since they depend on all species, and the
common ones are decisive. At the maximum area of
simple florula diversity the chance that two relevés
have the same species composition is minimal. The
compensatory area corresponds to the plot size at
which the pooled entropy of species is maximal, i.e.,
when the species are most distinctive among plots.
The highest overall association of species is indicat-
ed at the area of maximum associatum.

. The determination of these maximum areas may
be useful in pilot studies before ordination and
classification studies are performed. It seems that
multivariate analyses are most efficient if the sam-
ple contains as much information about communi-
ty heterogeneity as possible. Such an optimal sam-
ple can be obtained by using a plot size falling
within the interval [a,..a4,] which usually en-
closes a.,,,,. The usefulness of information theory
functions in determining optimal plot size, how-
ever, should be verified by their simultaneous
application with other characteristic functions and
multivariate analyses. :

- The ordering of characteristic areas is invariant
in the simple communities examined. The smallest
characteristic area corresponds to the maximum
associatum between species. The plot size with
maximum local distinctiveness and florula diversity
is usually larger than the area of maximum associa-
tum. The minimum area, when all differences be-
tween relevés disappear so that characteristic func-
tions have a zero value, tends to be relatively large.

It is observed that characteristic areas change as
succession progresses. However, the characteristic
ordering does not change significantly in the early
stages of a secondary succession. In some cases the
characteristic ordering and its changes in time may
be complicated owing to the high complexity of the
community.

Some problems may arise when estimating floru-
la diversity. In species poor communities a few

hundred plots should suffice. In species rich com-
munities, however, several thousand plots may be
needed to obtain a reasonably precise estimate of
diversity. Therefore, the extension of florula diver-
sity to subsets of species may be necessary. Such
subsets may be chosen at random or based on a
ranking procedure.

In addition, it is possible that the use of different
sizes of sampling units is insufficient for the proper
screening of characteristic areas. In this case, itera-
tive data collection should be carried out. However,
it seems very difficult to do any iterative sampling in
the field, since sampling may disturb the site. A
promising approach to solving this problem is
computerized sampling based on digitized field da-
ta (e.g., La France, 1972; Szécs, 1979). Since both
traditional and computerized sampling may be very
expensive, the optimal choice of sample size in rela-
tion to the number of species is of great importance.
A method to find such an optimum still awaits
development.

Regarding structure and succession, the joint ap-
plication of characteristic functions with tradition-
al species/individual diversity indices may be more
informative than a straight diversity study. Fur-
thermore, the use of characteristic functions should
not be restricted to studies in alteration of plot size.
Extensions to the change of plot shape and arran-
gement represent future possibilities.

Appendix

The FORTRAN program INPRO calculates ac-
tual values for functions (2), (4), (6) and (9) for
phytosociological data matrices. The program
accepts any kind of data which is subsequently
transformed to binary form according to ;-

ny=1,if x,;>0

Analysis of several data sets may be performed ina
single run. The first card contains input format for
all matrices. F specification should be used even if
the type of data is integer. The following block of
input and data cards may be repeated any number
of times

Card 2. Cols 1-3 Number of species

Cols4-7 Number of sample plots



Card 3. Cols 1-80 Title

Data cards Each species should start on a
new card and should be con-
tinued on additional cards as
necessary

The last card of the input deck should be a blank
card.

The program was implemented on an IBM 370
computer. A listing is available from the second
author upon request.
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