
9
Com par a tive eval u a tion of re sults

(The anal y ses must go on!)

Clas si fi ca tions, or di na tions and other types of re sults do not nec es sar ily rep re sent the fi nal
stage of our endeavour into the realm of multivariate data ex plo ra tion. There are sev eral ar gu -
ments sup port ing the view that the com pu ta tions should go on in most cases. For ex am ple, it is 
mostly true, ex cept for triv ial cases, that dif fer ent pro ce dures ap plied to the same set of data
pro duce more or less di verg ing re sults! It was dem on strated in this book most mark edly for hi -
er ar chi cal clus ter ing. Al though the meth ods them selves are con sid ered ‘ob jec tive’ tools, there 
are sev eral points dur ing data anal y sis where the sur vey ors’ de ci sions are in ev i ta bly sub jec -
tive. To men tion a few: the def i ni tion of sam pling char ac ter is tics (e.g., quadrat size), the se lec -
tion of vari ables, data types and trans for ma tion meth ods, the choice of the re sem blance
func tion, the or di na tion or clus ter ing al go rithm are all up to the in ves ti ga tor, – and the list
could have been con tin ued. To make sure that these de ci sions do not in flu ence our con clu -
sions sig nif i cantly, it is al ways ad vis able to ex am ine their rel a tive im pact upon the re sults.
This is the only pos si bil ity to re move the meth od olog i cal ‘artefacts’ from the anal y sis, thus re -
veal ing in for ma tion that truly re flects the prop er ties of study ob jects them selves. The com par -
i son of the re sults of al ter na tive anal y ses is the most use ful in this ap proach. In cer tain
sit u a tions, how ever, com par i sons do not re late to meth od olog i cal choices. A good ex am ple is
par si mony anal y sis in cladistics which may pro duce hun dreds of equally op ti mal trees whose
syn the sis into a new tree leads us to the fi nal con clu sions. This chap ter is de voted en tirely to
var i ous ap proaches to the com par i son and syn the sis of al ter na tive re sults.

Units of com par i son

Each al ter na tive re sult may be con sid ered as an ob ject, in the same way as taxa, sam ple plots
and other in di vid u als were treated in the first part of the study. On the an a logue of OTUs of
nu mer i cal tax on omy and OGUs of ge og ra phy, dendrograms, or di na tions, dis tance ma tri ces
and other types of re sults may be col lec tively termed as op er a tional units of com par i son
(OUC, Podani 1989d). Whereas two dendrograms may be con trasted ac cord ing to the usual
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Eu clid ean dis tance func tion in the same way as two OTUs, the char ac ter is tics on which the
com par i son is based are very dif fer ent from the fea tures of ‘nat u ral’ ob jects.  It is clear for all
of us that the com par a tive eval u a tion of OUCs re quires spe cial means that ad e quately re flect
their math e mat i cal prop er ties.  When the dis tance is prop erly de fined, then most an a lyt i cal
tools al ready known from the pre vi ous chap ters will be help ful, al though in cer tain sit u a tions
the old and good pro ce dures of con ven tional biostatistics are called for – in a mod i fied form.

9.1 Main choices

Com par i sons may fol low very di verse log i cal path ways, there fore this topic is ex tremely in tri -
cate and com pli cated. For di dac tic rea sons and better ori en ta tion in the sub ject, the main pos -
si bil i ties are cat e go rized. We should note first that the in ves ti ga tor is faced with sev eral
choices be tween two al ter na tives when mak ing a com par i son, even though he or she is not al -
ways aware of any such de ci sion (Podani 1989d). Many choices fit a di chot o mous de ci sion
tree (Fig ure 9.1) whereas oth ers – the lat ter three in the list that fol lows – have a more gen eral
va lid ity, be ing equally im por tant on sev eral branches of the tree.

9.1.1. Type of re sults: iden ti cal vs dif fer ent

Com par i sons are most com monly made be tween re sults of the same type, such as be tween two 
par ti tions or two or di na tions. This pos si bil ity was not ex plored yet in this book. How ever, we
have seen al ready some ex am ples of an ap proach in which the units com pared are of dif fer ent
type. The com par i son of a dendrogram with the ma trix from which it was de rived (cophenetic
cor re la tion, Sub sec tion 5.5.1) im plies a quan ti ta tive mea sure ment of the agree ment be tween
two dif fer ent kinds of math e mat i cal ob jects. The si mul ta neous graph i cal dis play of two re -
sults by the su per po si tion of one re sult upon the other is an ex am ple for a vi sual com par i son,
as il lus trated by po si tion ing a plexus graph over an or di na tion di a gram (Fig ure 8.10b). Fur ther 
ex am ples for inter-type com par i son will be shown in Sub sec tion 9.5.2.

9.1.2. Sim i lar ity vs con sen sus

The sim i lar ity or dis tance be tween a pair of OUCs may be ex pressed nu mer i cally, and the
com par i son of k > 2 OUCs in all pos si ble pairs (‘mul ti ple com par i sons’) pro vides a re sem -
blance ma trix which may be used in turn for the clas si fi ca tion or or di na tion of OUCs (‘meta
anal y sis’). The very same k re sults may also be syn the sized into a k+1th re sult which may
show both agree ments and dis agree ments of the orig i nal re sults. This syn the sis is the con sen -
sus ob ject of ten used to rep re sent the en tire set of com pet ing OUCs in the bi o log i cal in ter pre -
ta tion of re sults.

9.1.3. Hy poth e sis test ing vs ex plor atory anal y sis

The in ves ti ga tor may want to see whether the sim i lar ity be tween two OUCs is sig nif i cant or
not in the tra di tional sense. That is, the data ex plo ra tion may end up with a sta tis ti cal ap proach
which was al most com pletely for got ten in the first phase of the study! In or der to be able to do
this, how ever, two im por tant con di tions must be sat is fied. First of all, the two OUCs to be
com pared must be in de pend ently de rived which means, for ex am ple, that they can not come
from the same set of data. Thus, the sig nif i cance of dendrogram sim i lar ity may only be tested
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if the first is based on vari able do main A and the other on vari able do main B, the do mains hav -
ing no vari ables in com mon. The ques tion whether the two dendrograms are sig nif i cantly sim -
i lar im plies test ing the prop o si tion that the two groups of vari ables lead to sim i lar
clas si fi ca tions. The other con di tion of any sig nif i cance test is the avail abil ity of the ref er ence
dis tri bu tion of the sta tis tic that mea sures sim i lar ity. Since the un der ly ing dis tri bu tions are not
known, with a few ex cep tions, the only res o lu tion is to gen er ate them by Monte Carlo sim u la -
tion. The es sence of this ap proach is that hun dreds or even thou sands of ran domly cre ated
pairs of OUCs are com pared by the given sim i lar ity mea sure, and the fre quency his to gram of
cat e go rized sim i lar ity val ues is drawn, al low ing to ex am ine the po si tion of the ac tual sim i lar -
ity value.

If the in de pend ence con di tion for sig nif i cance tests is vi o lated, then some ex plor atory
func tion of the sta tis tics still re mains. For k > 2, we can pro ceed as de scribed be low in sub sec -
tion 9.1.5. How ever, in stud ies re stricted to the com par i son of two OUCs the sin gle sim i lar ity
value is prac ti cally un in for ma tive by it self. In such a case, we can still use the ref er ence dis tri -
bu tion to as sess the po si tion of the sin gle value rel a tive to the mean, etc., but we should never
make state ments as to the ‘sig nif i cance’ of such re sults.

9.1.4 Planned vs un planned com par i sons

If sig nif i cance test ing is valid and there are sev eral pairs of OUCs, then we must give care ful
con sid er ations to the fol low ing prob lem. We are faced with a sit u a tion anal o gous to de ter min -
ing the least sig nif i cant dif fer ence (LSD) af ter the ANOVA of sev eral sam ples (Sokal & Rohlf 

1981a): the se lec tion of sig nif i cant sim i lar i ties from the ma trix of all 
k
2









 val ues ac cu mu lates

Type I er rors and there fore more pairs are deemed sig nif i cantly sim i lar than ac tu ally are at the
cho sen prob a bil ity level (usu ally p = 0.05). When ever we de cide be fore the cal cu la tions that
some par tic u lar pairs are of in ter est only (‘planned com par i sons‘), then the above prob lem is
avoided and the sim u lated dis tri bu tion ap plies to the test. If, on the other hand, there are no a
pri ori se lected pairs of OUCs (‘un planned com par i sons’) and all pairs are to be tested, then
the test should be made more con ser va tive. The Monte Carlo sim u la tion of the min ima for
k(k–1) pairwise com par i sons pro vides a so lu tion for this prob lem (see Sub sec tion 9.3.6).
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Fig ure 9.1.  Tree di a gram il lus trat ing the main choices to be made when com par ing re sults of
multivariate anal y sis.



9.1.5. Over all com par i sons vs com par i sons to a ref er ence ba sis

We do over all com par i sons when none of the OUCs is fa vored for some rea son, so that com -
par i sons in all pos si ble pairs are plau si ble. The rel a tive dif fer ences be tween the sim i lar ity val -
ues will be most in for ma tive in the meta-analysis that fol lows. No such meta anal y sis is
re quired, how ever, if one of the OUCs is con sid ered as a ref er ence ba sis to which all the oth ers 
may be com pared. For ex am ple, an or di na tion based on all the vari ables is the ref er ence and
we may wish to ex am ine how the step wise omis sion of least im por tant vari ables will mod ify
sim i lar ity to this ref er ence or di na tion. The ref er ence now serves as the ‘con trol’ ob ject in such 
com par i sons.

9.1.6. Con gru ence vs al go rith mic ef fects

Rohlf & Sokal (1981b) and Gower (1983) called our at ten tion to this dis tinc tion, not shown in
the de ci sion tree of Fig. 9.1 be cause it ap pears log i cally in all com par i sons. This is es sen tially
a dis tinc tion be tween the o ret i cal/bi o log i cal rea sons and tech ni cal/meth od olog i cal as pects.
We can say that if the dif fer ence be tween al ter na tive re sults may be ex plained by bi o log i cal
causes, then we do anal y sis of con gru ence (e.g., com par i son of clas si fi ca tions based on data
from the adult and lar val stages to eval u ate tax o nomic con gru ence). Such prob lems are better
distingushed from sit u a tions when the dif fer ences among re sults are ex plained by mere al go -
rith mic mod i fi ca tions and other tech ni cal i ties.

9.1.7. El e men tary vs com plex com par i sons

In el e men tary com par i sons, the dif fer ences be tween the al ter na tive OUCs are caused by a sin -
gle fac tor. In a study of the ef fect of classi fi ca tory strat e gies upon the dendrograms, the other
‘pa ram e ters’ of the anal y sis (data type, re sem blance func tion, etc.) must be kept con stant. If
we do not care about this, then the change of two or more fac tors will have a con found ing ef -
fect upon the re sults, and our con clu sions may be mis lead ing (cf. Kenkel & Orlóci 1986).
Such con found ing ef fects are dis re garded more com monly in the pub lished lit er a ture than we
would think! If two or more fac tors are eval u ated sys tem at i cally, in all pos si ble com bi na tions,
then their rel a tive im por tance may be re vealed by com plex com par i sons (Podani 1989d).

9.1.8. Uni- vs multivariate eval u a tion

Any com par i son is univariate when a sin gle prop erty of the OUCs is con sid ered (e.g., con -
trast ing dendrograms with one an other based on path dif fer ences only, see Sub sec tion 9.2.3).
Quite sur pris ingly, most of the pub lished com par i sons are of this type, even though all the pre -
vi ous steps of the anal y sis are es sen tially multivariate in na ture! Logic dic tates that the full
chain of com pu ta tions should be multivariate, wher ever pos si ble. Podani & Dickinson (1984)
ar gued that, in case of dendrograms at least, the com par i sons may be based si mul ta neously on
sev eral prop er ties of re sults, so that the en tire study may be multivariate.  This is also pos si ble
for other, rel a tively com plex ob jects such as cladograms, ad di tive trees and min i mum span -
ning trees.
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9.2 Pairwise comparison of results

Most of the rel e vant stud ies in cor po rate pairwise com par i sons, which may be of cen tral im -
por tance even in con sen sus gen er a tion. There fore, the meth od olog i cal part be gins with this
sub ject al though the de ci sion be tween pairwise com par i son and con sen sus is not on the high -
est level of the hi er ar chy of Fig ure 9.1.  The meth ods suit able for com par i sons are dis cussed
sep a rately for each type of re sult. First, pro ce dures for the com par i son of re sem blance ma tri -
ces are in tro duced be cause the eval u a tion of other types of re sults may of ten be traced back to
ma trix com par i sons.

9.2.1 Ma trix com par i sons

Nu mer i cal meth ods. Two sym met ric re sem blance (dis tance, sim i lar ity, etc.) ma tri ces, de -
noted here by D and E, are pre pared for nu mer i cal com par i son by un fold ing each of their up -
per semimatrices into a col umn vec tor. Then, we can make a choice from the huge ar se nal of
re sem blance func tions dis cussed in Chap ter 3. Most of ten, the cor re la tion co ef fi cient (For -
mula 3.70) is adapted, best known un der the term ma trix cor re la tion (Sneath & Sokal 1973:
280):
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In this, d and e are mean re sem blance val ues for D and E, re spec tively. The val ues in the di ag -
o nal are ex cluded from the av er ag ing and from the com par i son. If the two ma tri ces im ply sim -
i lar ten den cies for the re sem blance/dis tance re la tion ships of ob jects, ir re spec tive of the
ab so lute mag ni tude of val ues, then their ma trix cor re la tion will be close to 1. In gen eral, rDE
falls into the in ter val [–1, 1], as usual for cor re la tion mea sures. It must be pointed out that the
ap pli ca tion of cor re la tion in this case is ex plor atory, rather than rig or ously sta tis ti cal, be cause
the val ues within each ma trix are not in de pend ent of one an other. Thus, the ‘sig nif i cance’ of
rDE can not be tested in the  usual man ner (see Sub sec tion  9.3.1, for more).  The Eu clid ean dis -
tance be tween D and E may also be cal cu lated ac cord ing to:
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Other for mu la tions also ap pear in the lit er a ture, but these two func tions are the most com mon
in prac tice. Ma trix cor re la tion is most in for ma tive to gether with graph i cal com par i sons (see
be low) and when the two ma tri ces are not com men su ra ble (one is dis tance and the other is dis -
sim i lar ity, for ex am ple). For meta-analysis, all pairs of OUCs are com pared by the com ple -
ment of cor re la tion, as il lus trated in the fol low ing ex am ple. Eu clid ean dis tance is mean ing ful
only if the two re sem blance ma tri ces have iden ti cal mea sure ment scales.
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The dis sim i lar i ties among the ob jects of Ta ble A1 are cal cu lated first, based on eight co -
ef fi cients. The re sult ing ma tri ces are com pared in all pos si ble pairs us ing the com ple ment of
For mula 9.1. The ad van tage of us ing cor re la tion in this case is that the eight mea sures ex press 
dis sim i lar ity on dif fer ent scales. The ma trix of ma tri ces is then eval u ated by prin ci pal co or di -
nates anal y sis (Fig ure 9.2). The first two axes ac count for 84% of the dis tance re la tions,
which is a rel a tively high per cent age. The di a gram il lus trates per cep tively the re la tion ships of
the se lected re sem blance mea sures in this study. The five-member group on the left side com -
prises mea sures of very sim i lar be hav ior; and the Eu clid ean dis tance and the Manhattan met -
ric also form a small group. The lat ter is per haps sur pris ing be cause Eu clid ean dis tance
em pha sizes squared dif fer ences, rather than ab so lute de vi a tions as in the Manhattan met ric.
The Can berra met ric has an odd per for mance, ow ing to the sep a rate stan dard iza tion for each
pair of vari ables. Sim i lar re sults may be ob tained eas ily for other data sets (as in Podani 1994: 
191), show ing the fair gen er al ity of the pres ent con clu sions.

Graph i cal pro ce dure. In an or thogo nal co or di nate sys tem, each point rep re sents ob ject pair jk
with co or di nate djk on the horizintal axis and ejk on the ver ti cal axis. The scat ter di a gram thus
ob tained (ma trix plot, Rohlf 1993a) is in ter preted sim i larly to the Shepard-diagram (Sub sec -
tion 7.4.2). The better the fit of points to an imag i nary line in the plot, the higher is the sim i lar -
ity (lin ear cor re la tion) of the two ma tri ces be ing com pared.

The graph i cal com par i son of ma tri ces is il lus trated for two pairs of ma tri ces taken from
the ex am ple on the pre vi ous page: 1–BC vs 1–RUZ (r = 0.994) and CM vs CH (r = 0.522).
The scat ter grams are shown in Fig ure 9.3. For the first pair, the re la tion ship is al most lin ear,
whereas for the sec ond pair the sim i lar ity is much weaker. Note, for ex am ple, that the ob ject
pair with the small est chord dis tance is very dis tant if com pared ac cord ing to the Can berra
met ric.

9.2.2 Com par i son of par ti tions

Some meth ods use the strat egy of ma trix cor re la tion, while oth ers start from cross-partitions.
Fur ther, more spe cial ized tech niques eval u ate the pos si bil i ties of trans form ing one par ti tion
into the other in or der to de rive their sim i lar ity.
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Fig ure 9.2. Prin ci pal co or -
di nates or di na tion of eight
re sem blance ma tri ces ob -
tained by dif fer ent dis sim i -
lar ity mea sures. 
Sym bols:
1–BC: Bray - Curtis,
1–RUZ: Ruzicka,
1–SR:sim i lar ity ra tio,
1–HN: Horn in dex,
CM: Manhattan met ric,
CB: Can berra met ric,
EU: Eu clid ean dis tance,
CH: chord dis tance.



Ma trix com par i sons. Any par ti tion P can be de scribed in terms of an mm sym met ric in ci -
dence ma trix, de noted here by CP. In this ma trix, cgh = 1 if ob jects g and h be long to the same
class in P, oth er wise cgh = 0.  Then, the sim i lar ity (or dis sim i lar ity) of par ti tions P and Q is ex -
pressed by the ma trix cor re la tion be tween the re spec tive in ci dence ma tri ces CP and CQ. The
sim i lar ity of these ma tri ces can also be cal cu lated by prac ti cally any of the pres ence/ab sence
co ef fi cients dis cussed in Sec tion 3.2. Using the no ta tions of the 22 con tin gency ta ble, a is the 
num ber of ob ject pairs that ap pear in the same clus ter in both par ti tions com pared, b is the
num ber of ob ject pairs ap pear ing to gether only in the first par ti tion, and so on. The for mu lae
are not re peated here, only a brief list is pro vided to show that their names may dif fer from
those known from the lit er a ture of dis sim i lar ity func tions:
- sim ple match ing co ef fi cient (For mula 3.6, = “Rand” in dex, Rand 1971), 
- Eu clid ean dis tance (For mula 3.7, = “PAIRBONDS”, Arabie & Boorman 1973),
- Jaccard in dex (For mula 3.24, Downton & Brennan 1980), 
- Sorensen in dex (For mula 3.25, = “per cent mu tual matches”, Arabie & Boorman 1973) and 
- Ochiai in dex (For mula 3.26, Fowlkes & Mal lows 1980).
All these mea sures but Eu clid ean dis tance are ex pressed usu ally in form of their com ple -
ments. Thus, com plete agree ment be tween par ti tions is in di cated by 0 in ev ery case. How ever, 
it is not true that max i mum pos si ble dis agree ment be tween P and Q yields a dis sim i lar ity of 1,
be cause the par ti tions are con strained to agree in some ob ject pairs. The value of a can not be
zero be cause we can not gen er ate two par ti tions of m ob jects (ex cept for the triv ial cases) such
that all ob ject pairs oc cur ring in the same group in P are in dif fer ent groups in Q. In or der to be
able to com pare dis sim i lar i ties com ing from dif fer ent cir cum stances, stan dard iza tion is nec -
es sary. Usually, stan dard iza tion is based on the ex pec ta tion for ran domly gen er ated par ti tions
and the po ten tial max i mum, ac cord ing to the for mula:

Actual value - Expected value
Possible maximum - Expected value

  ,                                                                (9.3)
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Fig ure 9.3. Graph i cal com par i son of ma tri ces. a: 1–Bray-Curtis vs 1–Ruzicka, b: Can berra met ric
(CM) vs chord dis tance  (CH), each cal cu lated for the ob jects of Ta ble A1.



(see Hubert & Arabie 1985). Those au thors pointed out that de ter min ing the max i mum is a
dif fi cult prob lem of com bi na torial op ti mi za tion. Podani (1986) pro posed heu ris tic search ing
meth ods to ap prox i mate the max ima. A par tial and usu ally sat is fac tory so lu tion is the com par -
i son of ac tual val ues with the ex pec ta tions and sig nif i cant val ues, at a given prob a bil ity level,
ob tained from sim u la tions.
Cross par ti tions. The cross par ti tions well-known from block clus ter ing are in ter preted now
as con tin gency ta bles in which the rows rep re sent the classes in P, the rows cor re spond to the
classes in Q. The size of the ta ble is st, with s and t as the num ber of clus ters in P and Q, re -
spec tively. The value of cell ij in this ta ble is the num ber of ob jects that be long to class i in P,
and to class j in Q. For ex am ple, for the two par ti tions of 10 ob jects

      1: { 1, 2, 3, 4, 5 } { 6, 7, 8, 9, 10 }

      2: { 1, 2, 3, 6, 7 } { 4, 5, 8, 9, 10 }
the cross-partition ta ble will be

                               Par ti tion 2

                            Class 1:  Class 2:

                 Class 1:      3         2

     Par ti tion 1

                 Class 2:      2         3

which cor re sponds to the fol low ing sub sets:

                { 1, 2, 3 }   { 4, 5 }

                { 6, 7 }  { 8, 9, 10 }
In gen eral, the con tin gency ta ble takes the fol low ing form:

Q
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q1 qj qt

p1

pi nij ni.

ps

n.j n.. = m

The mar ginal to tals are clus ter sizes in P and Q, m is the grand to tal (the num ber of ob jects
clas si fied). The ta ble may be eval u ated by the well-known 2 sta tis tic (For mula 3.36) which is 
re writ ten us ing the above no ta tions as,
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Zero value re sults of all classes in P are dis persed equally among the groups of Q, whereas the
max i mum oc curs if P = Q. This max i mum value, m  min [ (s–1), (t–1)], can be used as a nor -
mal iz ing con stant in the same way as in the Cramér-index (3.37).
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The Good man - Kruskal (1954) lambda (3.38-3.39) is also ap pli ca ble to com par ing par ti -
tions, with the fol low ing in ter pre ta tion. Sup pose that first we wish to make a guess about the
clus ter mem ber ship of an ob ject in par ti tion Q with out any in for ma tion on its po si tion in P.
Clearly, the best trial is the larg est group in Q, so we find max j [ n.j ] be cause this will min i -
mize the num ber of bad guesses. How ever, if we do know that the ob ject is clas si fied into
group i in P, then only the ith row of the cross-classification ta ble should be ex am ined and the
high est value of this row, maxj [ nij ], is to be found. Then, based on our knowl edge of P, the
mean de crease of our un cer tainty re gard ing the group mem ber ship in Q be comes:

LAS
n n

m n
i

s

j ij j j

j j
PQ 







1

max[ ] max[ ]

max [ ]

.

.

 .                                                                         (9.5)

It is an asymmeric mea sure of pre dict abil ity or pre dic tive power. Its value is zero if P is com -
pletely un in for ma tive on Q and 1 if the two par ti tions are iden ti cal. This co ef fi cient is use ful
when com par i sons are made with a ref er ence par ti tion (re call Sub sec tion 9.1.5). The sym met -
ric mea sure of mu tual pre dict abil ity, the Good man-Kruskal’s lambda it self is cal cu lated ac -
cord ing to:
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 .                                    (9.6)

Its val ues range from 0 to 1. The com ple ment of (9.6) is a dis sim i lar ity be tween P and Q. 

It is to be noted that there is a for mal re la tion ship be tween the cross par ti tion-based and
ma trix-based com par i sons: one may be ex pressed in terms of the other. For ex am ple, the
value of a in ma trix com par i sons may be writ ten us ing the no ta tion of cross-partitions as 
[ ]  n mij

2 2.

Trans for ma tion met rics. The pro ce dures most spe cific to par ti tions ex am ine the num ber of el -
e men tary steps nec es sary to con vert par ti tion P into Q. The trans for ma tion met ric pro posed
by Day (1981, MINDMT, “min. di vi sions, mergences and trans fers”) is the sim plest of all:
this is the min i mum num ber of ob jects that must be re as signed to a dif fer ent group in or der to
ob tain par ti tion Q. If s = t, then the cross-partition ta ble may be trans formed into a ma trix Z
such that the sum of the di ag o nal val ues is max i mum and there fore the num ber of ob jects to be 
re grouped, the sum of off-diagonal val ues, is min i mized: 

MINDMT mPQ   tr ( )Z                                                                                           (9.7)

When s  t,then the above for mula also ap plies pro vided that empty (dummy) classes are
added to the par ti tion with the fewer num ber of groups. The max i mum of For mula 9.7 also de -
serves our at ten tion, be cause it is use ful to de rive a nor mal ized ver sion of the co ef fi cient:

MISC m
MINDMTPQ 
 tr ( )

max [ ]
Z                                                                                      (9.8)
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(“misclassification” in dex). Its lower bound is 0 (full agree ment) while the up per bound is 1
(when the max i mum num ber of re lo ca tions are needed to con vert P into Q). The max i mum oc -
curs if the val ues of the cross clas si fi ca tion ta ble are the most uni form. Day (1981) has pro -
posed many other for mu la tions, such as the sigma met ric, which com bines some of the in di ces 
al ready de scribed:
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This is also ob tained by max i miz ing tr {Z}. The so lu tion is not nec es sar ily unique, how ever,
be cause the same sum of squares may re sult for the di ag o nal val ues from dif fer ent re ar range -
ments within the cross-classification ma trix (the as so ci ated a, b and c val ues ahve some free -
dom to change). 

To dem on strate the above ap proaches, let us per form the fol low ing study. First, con vert
the data in Ta ble A4 into pres ence/ab sence form and rank the 30 spe cies ac cord ing to cri te rion 
5.8 (see Sub sec tion 8.1.1). Then, the global op ti mi za tion par ti tion ing strat egy (Sub sec tion
4.1.2) and the sim ple match ing co ef fi cient (For mula 3.6) are used to clas sify the 20 ob jects
into two clus ters based on all spe cies and on con sec u tively re duced spe cies sub sets. The ref er -
ence ba sis is ob vi ously the clas si fi ca tion based on the to tal set of spe cies. The dis sim i lar ity of
the other clas si fi ca tions to this ref er ence may be il lus trated by a line di a gram (Fig. 9.4). This
al lows dem on strat ing the re la tion ship be tween a clas si fi ca tion and the num ber of vari ables
con sid ered. Many coeffcients of par ti tion agree ment will also be com pa ra ble (here I con sider
only those pro duc ing a range of [0,1], so the sigma met ric and PAIRBONDS are omit ted).
The re moval of the least im por tant five spe cies does not mod ify the start ing clas si fi ca tion, but 
leav ing fur ther five spe cies out will be in flu en tial. Twenty and fif teen spe cies pro vide the
same clas si fi ca tion, and the same is true for 10 and 5 spe cies. The in dex most sen si tive to the
ini tial changes is 1–JAC, which in creases slowly af ter wards. Since the max i mum num ber of
re lo ca tions is 10, the value of the MISC co ef fi cient informs us that the  first big change in -
volves the re lo ca tion of three, and then five ob jects from the intial groups. Actually, this in dex 
seems to re flect quite well the ‘av er age be hav ior’ of the other five in di ces. 
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Fig ure 9.4. The ef fect
of spe cies re mov als on
clas si fi ca tions vi su al -
ized by the com par i son
to the ref er ence (30 spe -
cies, 100 %), us ing six
co ef fi cients of par ti tion
dis agree ment. The clas -
si fi ca tions were made
us ing the pres ence/ab -
sence ver sion of Ta ble
A4. The ver ti cal axis
mea sures dis sim i lar ity
to ther eference.



Com par i son of fuzzy par ti tions. This ap proach is based on the Um,c ma tri ces in which the
weight 0ujk1 mea sures the de gree of be long ing of ob ject j to class k. Two fuzzy par ti tions F
and G may be ad e quately rep re sented by the cor re spond ing ma tri ces  UF and UG. Podani
(1990) sug gested mea sur ing the dis sim i lar ity be tween F and G by the min i mum sum of
squared de vi a tions of the val ues in UF nec es sary to trans form F into G. This sym met ric mea -
sure is ob tained by ex am in ing all the col umn per mu ta tions of UF while UG re mains un -
changed. More for mally, we min i mize the quan tity
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in which c is the num ber of classes. The per mu ta tions are eas ily gen er ated up to 7 or so
classes; larger val ues of c rearely ap pear any way. The above for mula tol er ates un equal num -
bers of classes in F and G; only dummy classes are to be added to the clas si fi ca tion with the
fewer num ber of groups. Clearly, For mula 9.10 ap plies to hard par ti tions as well; re call that
they are just spe cial cases of hard par ti tions (for each ob ject, one weight is 1 and all oth ers are
zero). There is a sim ple re la tion ship be tween 9.10 and 9.7: 2 2 MINDMT. The max i mum of
9.7 is there fore use ful for nor mal iz ing For mula 9.10 as well.

The method is il lus trated us ing the Iris data set. The 150 in di vid u als are as signed to three
classes by the fuzzy c-means clus ter ing al go rithm, with the fol low ing val ues of the co ef fi cient 
of fuzz i ness: 1.10, 1.25, 1.5, 2.0 and 3.0. Since the co ef fi cient can not at tain the value of 1, for
sin gu lar ity prob lems, the k-means clas si fi ca tion of the same ob jects is con sid ered as a com pa -
ra ble hard par ti tion. These op er a tions pro vide a clas si fi ca tion se ries the mem bers of which are 
com pared in ev ery pos si ble pair us ing For mula 9.10. The dis sim i lar ity ma trix is then an a lyzed 
by prin ci pal co or di nates anal y sis (Fig ure 9.5). The first two axes ac count for 80% of the vari -
a tion, in di cat ing that the two-dimensional scat ter gram is a quite faith ful rep re sen ta tion of the
re la tion ships among the clas si fi ca tions. Not with stand ing the pres ence of an arch in the re sult -
ing con fig u ra tion, there is a clear ‘gra di ent’ from the hard par ti tions to wards the fuzz i est one.
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Fig ure 9.5. A clas si fi ca tion se -
ries as por trayed by a PCoA or -
di na tion. The Iris in di vid u als
(Ta ble A2) were clas si fied by the 
k-means method and the fuzzy
c-means clus ter ing al go rithm
with in creas ing val ues of the co -
ef fi cient of fuzz i ness (f). Note
that the arch ef fect may also ap -
pear in meta-analysis.



9.2.3 Dendrograms and cladograms

Be ing tree graphs, dendrograms and cladograms are more com plex struc tures than the OUCs
dis cussed thus far snd their com par a tive eval u a tion is a real chal lenge for us. Re gard ing their
in her ent top o log i cal struc ture, a dendrogram and a rooted cladogram are sim i lar: both of them
sum ma rize hi er ar chi cal re la tion ships in form of a usu ally di chot o mous tree with the ter mi nal
nodes rep re sent ing the ob jects. (I will not dis cuss unrooted phylo gen etic trees here). In most
dendrograms, some val ues are as signed to the in te rior ver ti ces (hi er ar chi cal lev els) whereas in 
cladograms each edge may have some as so ci ated weight. De spite these ob vi ous dif fer ences, it 
is use ful to han dle these OUC types to gether. 
Ma trix com par i sons. The clas si cal meth ods re duce the prob lem of eval u at ing dendrograms to
the com par i son of ma tri ces. The idea is that each dendrogram may be re placed by a descriptor
ma trix C in which cjk re flects the mu tual re la tion ship of ob jects j and k in the tree. This re la -
tion ship, how ever, may be char ac ter ized in sev eral ways as il lus trated by Fig ure 9.6; and the
choice among these descriptors is not al ways triv ial. Podani & Dickinson (1984) listed the
first five descriptors that fol low; there is a sixth one, and it is pos si ble that some other
descriptors will also be in tro duced in the fu ture.
1. Cophenetic dif fer ence: it is the low est hi er ar chi cal level at which ob jects j and k be long to
the same clus ter (Fig. 9.6a). The lev els per tain ing to all pos si ble pairs of ob jects are writ ten
into the cophenetic ma trix C which is an un equiv o cal rep re sen ta tion of the dendrogram (e.g.,
Sokal & Rohlf 1962). It means that the tree can be per fectly re pro duced from C. 
2. Path dif fer ence: the num ber of ver ti ces along the path be tween ob jects  j and k; it is one less
than the num ber of edges con nect ing j and k (Fig. 9.6b, see e.g., Farris 1973, Phipps 1971,
Wil liams & Clif ford 1971). This descriptor has been re ferred to un der var i ous mis lead ing
names (top o log i cal dif fer ence, cladistic dif fer ence). Ma trix T con tain ing the pairwise path
dif fer ences sum ma rizes full in for ma tion on tree struc ture (to pol ogy) but the hi er ar chi cal lev -
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Fig ure 9.6. Dendrogram descriptors on the ex am ple of ob jects j and k in a dendrogram for 7 ob jects.
a: cophenetic dif fer ence, b: path dif fer ence (= 4), c: clus ter mem ber ship di ver gence (= 5), d: par ti tion
mem ber ship di ver gence (= 5), e: subtree mem ber ship di ver gence (= 4).



els are lost. It is a four-point met ric, unsensitive to the po si tion of the root and is there fore
better suited to unrooed trees (Podani 2000). 

3. Clus ter mem ber ship di ver gence is the num ber of ob jects in the small est clus ter con tain ing
both j and k (Fig. 9.6c). The ma trix M of di ver gences con tains all in for ma tion for the re pro -
duc tion of tree to pol ogy (all val ues but the di ag o nal sat isfy the con di tions of be ing an
ultrametric,  mjk is there fore a quasi-ultrametric, Podani 2000). 

4. Par ti tion mem ber ship di ver gence: This mea sure uti lizes the prop erty that a dendrogram is a 
se ries of nested par ti tions. Ex clud ing the triv ial case of all ob jects be long ing to the same class,
a dendrogram im plies a max i mum of m–1 par ti tions. This max i mum is not reached if there are
iden ti cal hi er ar chi cal lev els or multifurcations. The rel a tive po si tion of ob jects j and k in the
tree may be ex pressed by the num ber of par ti tions in which these two ob jects be long to dif fer -
ent clus ters (Fig. 9.6d). Al though par ti tion mem ber ship di ver gence is top o log i cal, the in for -
ma tion con cern ing the se quence of hi er ar chi cal lev els in the tree is also pre served in the mm
ma trix of di ver gences. There fore, this descriptor is best suited to ranked trees in which the ab -
so lute lev els are re placed by their ranks.  

5. Subtree mem ber ship di ver gence: This descriptor char ac ter izes the tree based on its in ter nal
branch ing struc ture. In a bi nary tree (in which only di chot o mies ap pear), there are m–1
subtrees, in clud ing the dendrogram it self.  In fact, each in te rior ver tex has its own subtree. The 
re la tion ship be tween ob ject pair j, k is mea sured by the num ber of such subtrees in which they
do not oc cur to gether (Fig. 9.6e).  

6. Path length (pa tris tic dis tance): If the tree-generating pro ce dure as signs a length (or
weight) to each branch in the tree, then the sum of the lengths along the path be tween two ob -
jects pro vides a new descriptor, sum ma rized in the  path length ma trix P.  For the com par i son
of phylo gen etic trees, path length is the most ap pro pri ate, al though – if we for get about branch 
lengths – top o log i cal descriptors 2-3 and 5 may also be ap pro pri ate.

Some of the descriptors are not new: cophenetic lev els were dis cussed al ready when
cophenetic cor re la tion was in tro duced (Sub sec tion 5.5.1) while pa tris tic dis tances were de -
scribed in the con text of ad di tive trees (Sub sec tion 5.4.4). The six descriptors em pha size dif -
fer ent prop er ties of the tree, and they are there fore sen si tive to dif fer ent within-tree
‘anom a lies’. This must be kept in mind when se lect ing a par tic u lar descriptor for dendrogram
eval u a tions. For ex am ple, if re ver sals oc cur in the trees, then cophenetic dif fer ence and par ti -
tion mem ber ship di ver gence be come mean ing less. The pres ence of multifurcations has det ri -
men tal ef fects on the be hav ior of path length and subtree mem ber ship di ver gence. On the
other hand, clus ter mem ber ship di ver gence is not af fected by re ver sals. When we wish to use
cophenetic dif fer ence, the pat tern of in creases in the hi er ar chi cal lev els should also be con sid -
ered care fully. The dendrograms of Fig ures 5.7a and 5.11a, for ex am ple, dif fer con sid er ably
in this re gard; the lev els in crease slowly in the first and ‘ex po nen tially’ in the sec ond. The use 
of cophenetic dif fer ences is not rec om mended in this case, be cause the two dendrograms are
ap par ently not com men su ra ble by lev els. 

 Dendrograms and cladograms are com pared by cal cu lat ing the cor re la tion or dis tance be -
tween their re spec tive descriptor ma tri ces. This univariate com par i son is gen er al ized to sev -
eral descriptors as fol lows. As sume that the two dendrograms to be com pared are de noted by
D1 and D2. Their squared Eu clid ean dis tance based on five descriptors will have the fol low ing 
form: 
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in which the states of x(a) rep re sent the descriptors. For cladograms, descriptors 2, 3, 5 and 6
may ap pear in the third sum ma tion. Nor mal iza tion is nec es sary to elim i nate the in ev i ta ble
scale dif fer ences among descriptors. Cophenetic lev els are rescaled to fall into the in ter val
[0,1] for each dendrogram. Clus ter mem ber ship di ver gence is di vided by m. Par ti tion mem -
ber ship di ver gence may be nor mal ized in sim i lar way: the scores are di vided by the num ber of
partititons im plied by the given dendrogram (max m–1). Path dif fer ence and subtree mem ber -
ship di ver gence are nor mal ized by the ac tual max i mum found in each dendrogram. 

The fol low ing ex am ple is based on an ex ten sive sur vey by the au thor (Podani 1985), and
il lus trates dendrogram com par i sons in a com plex de sign. The ob jec tive is to de tect the rel a -
tive im pact of sam pling (quadrat size) and data type upon the re sults of a phytosociological
clas si fi ca tion. The per cent age cover scores of spe cies were re corded in 20 quad rats, each con -
tain ing a nested se ries of eight dif fer ent sizes (in the man ner shown in Fig. 1.9). The raw data
were used to de rive fur ther three data types: two were ob tained by the Clymo func tion (For -
mula 2.16a, c = 3 and c = 15), and the third was the ul ti mate sim pli fi ca tion into the pres -
ence/ab sence form. The four types of scores may be ar ranged into a data trans for ma tion
se ries, with two tran si tional stages be tween the quan ti ta tive and pres ence/ab sence types. The
si mul ta neous change of data type and quadrat size pro vided 32 com bi na tions, each char ac ter -
ized by its own 2020 dis tance ma trix and the dendrogram ob tained from this by sum of
squares ag glom er a tion. The 32 dis tance ma tri ces were then com pared in all pairs us ing the
cor re la tion co ef fi cient to yield a 3232 ma trix be tween these re sults. In its PCoA or di na tion
(Fig 9.7a), axis 1 is very strongly uni po lar and there fore un in for ma tive. Axes 2 and 3, al -
though ex plain ing only 9 and 2.3% of the vari a tion, re spec tively, are more in ter est ing to us.
The scat ter di a gram shows clearly that data type is more in flu en tial than quadrat size which is
most neg li gi ble in the pres ence/ab sence case. The trends are less clear-cut, but still rec og niz -
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Fig ure 9.7. Com plex com par i sons to il lus trate the joint ef fect of quadrat size (in creases shown by ar -
rows, from 0.25 to 16 m2) and data type (=cover, = Clymo c=3, =Clymo c=15, =pres ence/ab -
sences). The PCoA or di na tion of dis tance ma tri ces (a) shows the trends more clearly than the
or di na tion of dendrograms  (b). Re drawn af ter Podani (1989d).



able in the PCoA or di na tion of dendro grams from their ma trix cal cu lated us ing For mula 9.11
(Fig. 9.7b; the two axes ex plain ing  21 and 16%). Along the first axis of this or di na tion, the
first two as well as the sec ond two steps of the data trans for ma tion se ries can not be dis tin -
guished whereas the ef fect of quadrat size is the small est in the pres ence/ab sence case, as be -
fore. 

Graph i cal com par i son. Two dendrograms or cladograms may be con trasted graph i cally us ing 
their re spec tive descriptor ma tri ces, as de scribed in sub sec tion 9.2.1. 

Ultrametrics. A com pletely dif fer ent ap proach to dendrogram com par i son is due to Dobson
(1975). The method ex am ines the ultrametric in equal ity for each ob ject trip let and then enu -
mer ates the num ber of trip lets for which the in equal i ties are not the same in the two
dendrograms. In other words, trip let {i, j, k} counts if cij<cik=cjk sat is fies in D1 but  we have

cik<cij=cjk or cjk<cij=cik in D2. This num ber may be  di vided by the  pos si ble max i mum, 
m
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
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
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i.e., the num ber of trip lets for m ob jects, to pro vide the ultrametric dis sim i lar ity mea sure
which has the range of [0,1].

Branches and branch lengths. An other group of meth ods op er ates by count ing the branches
(edges) or by add ing the as so ci ated lengths to de rive tree dis sim i lar ity mea sures. The ba sic
idea is due to Rob in son & Foulds (1979, 1981). The orig i nal ap proach was de vel oped for
unrooted trees al though, with some mod i fi ca tions, they ap ply to dendrograms as well. The
sim plest in dex in volves the re moval of one branch of the tree at a time. In a di chot o mous
unrooted tree, the num ber of in te rior branches is m–3. The re moval of ei ther of them pro vides
a two-cluster par ti tion of the ob jects1. An in te rior branch of D1 matches an in te rior branch in
D2 if their re moval pro vides iden ti cal par ti tions. (For dendrograms, the two branches com ing
from the root must be treated as a sin gle branch to al low the com par i son.) The num ber of mis -
match ing branches  is then used as a mea sure of agree ment be tween the trees (sym met -
ric-difference dis tance or par ti tion met ric, Rob in son & Foulds 1979, 1981). This num ber,
di vided by the pos si ble max i mum yields the edge match ing co ef fi cient for m>3.:

EM D D
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1 2

2 6



number of mismatched branches in and  .                                    (9.12)

Its range is [0,1]; 0 in di cat ing full agree ment, 1 cor re spond ing to max i mum dis agree ment.
Mea sure 9.12 does not make any dis tinc tion be tween branches; their po si tion in the tree or
their lengths do not mat ter. How ever, if the sum of lengths of mis matched branches is di vided
by the to tal length of the two trees, then we have a weighted mea sure. 

For unrooted trees, the best known mea sure is the near est neigh bor in ter change (nni) met -
ric (Water man & Smith 1978) or cross over (Rob in son 1971). We have seen in the dis cus sion
of cladograms that the in ter change of subtrees per tain ing to an in te rior branch is part of the
op ti mi za tion al go rithms. Ac cord ing to the nni met ric, the dis tance be tween two trees is the
min i mum num ber of such changes nec es sary to con vert one tree into the other. For large m,
de ter min ing the max i mum is a for mi da ble task, but Brown & Day (1984) de scribed a fast ap -
prox i ma tion to the nni met ric. 
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1 Branches leading to the terminal noda are disregarded, since their removal yields trivial partitions (one object
plus all others) which always appear in both dendrograms. 



9.2.4 Com par i son of or di na tions

Any or di na tion may be rep re sented by the t-di men sional co or di nates of m ob jects. In most
com par i sons, the first p (<<t) di men sions are of in ter est only be cause the oth ers do not con vey
mean ing ful in for ma tion (in sense of per cent age vari ance, for ex am ple). Pairwise com par i sons 
of or di na tions, like any other OUCs, may be use ful to as sess the rel a tive in flu ence of vari -
ables, data types, re sem blance func tions and or di na tion al go rithms upon the re sult ing con fig -
u ra tions.  The tax o nomic con gru ence of or di na tions of OTUs based on veg e ta tive and
re pro duc tive char ac ters may also be eval u ated in this way. Since the de scrip tion of shape in
terms of co or di nates is also an or di na tion (Sub sec tion 7.6.2), the com par i son of shapes by su -
per po si tion meth ods is a spe cial case for this ap proach. In one di men sion, or di na tions may be
com pared by the prod uct mo ment or the rank cor re la tion co ef fi cient. In most cases, in ter est
lies in at least two di men sions and cor re la tions be tween co or di nates do not work. Ma trix cor -
re la tion, how ever, may be a so lu tion for two or more di men sions in such a way that each or di -
na tion is de scribed by the dis tances of m points in the p-di men sional subspace (e.g., Podani
1989d, Fig ure 9.8). If such an ap proach is plau si ble, then the graph i cal com par i son of two or -
di na tions will also be pos si ble. Not with stand ing the ap pli ca bil ity of ma trix cor re la tion, a more 
el e gant geo met ric pro ce dure has re ceived gen eral ac cep tance in nu mer i cal ecol ogy and
morphometrics. This is the so-called Pro crus tes method, de vel oped partly in de pend ently by
sev eral au thors  (Green 1952, Gower 1971a, Schönemann & Carroll 1970). The name re fers to 
the ill-famed fig ure of Greek my thol ogy, Pro crus tes the gi ant, who seized trav el ers in Attica
and tied them to an iron bed stead by cut ting off their legs or stretch ing them un til they fit ted it.
Hence the ex pres sion, Pro crus tean bed which means “be ing forced to strict con for mity un der
vi o lent mea sures”. The name re flects that the or di na tions must be sub jected to some dras tic
ma nip u la tions be fore any mean ing ful com par i sons can be made. The ba sic as sump tions of
Pro crus tean anal y sis are that two or di na tions are deemed in dis tin guish able if:
– ei ther is ob tained by shift ing the other (i.e., by add ing a con stant to all of its co or di nates); 
– ei ther of them is ob tained via mul ti ply ing the co or di nates of the other by a con stant value;

– the ro ta tion of ei ther or di na tion by an an gle re pro duces the other, in clud ing the spe cial
case of  = 180o (re flec tion). 
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Fig ure 9.8. Meta anal y sis of or di -
na tions us ing the same data as in
Fig ure 9.7. A point rep re sents a
PCoA or di na tion of 20 quad rats for
a given com bi na tion of data type
and quadrat size. The PCoA of or -
di na tions started from the com ple -
ment of the ma trix cor re la tions for
the first two orig i nal di men sions.
Axes 2 and 3 are shown, with their
rel a tive per cent ages be ing 14 and
7%. Con trary to or di na tion 9.7a, the 
two ex treme data types ap pear less
sen si tive to quadrat size changes
(re drawn af ter Podani 1989d).



Starting from these as sump tions, the com par i son of two or di na tions in volves max i miz ing the
fit of one or di na tion over the other by cen tring, ro ta tion and di la tion (rescaling). The best fit is
then mea sured by the sum of squared dis tances be tween the cor re spond ing points (Fig. 9.9).

More for mally, if the cen tred co or di nates of m points in p di men sions are writ ten into ma -
tri ces X and Y, then the min i mum value of the fol low ing func tion is sought: 

 
i

m

j

p

ij ijx y
 
      

1 1

2( ) ( ) ( ) .tr X Y X Y                                                        (9.13)

This is cal cu lated by leav ing X un changed and trans form ing Y with the pp or thogo nal ro tat -
ing ma trix  H:  

H VU=                                                                                                             (9.14)

in which U and V are de rived from the sin gu lar value de com po si tion of XY (Ap pen dix C):
X Y USV =                                                                                                       (9.15)

(S is a di ag o nal ma trix con tain ing the square roots of eigenvalues). The good ness of fit is then 
ex pressed by the fol low ing for mula: 

 RE
2  tr ( - ) ( - ) =X YH X YH                                                                                   

= tr( ) + tr( ) - 2tr( )1 2XX YY YX XY     .                                                           (9.16)

This is a sym met ric mea sure, in flu enced heavily by the ac tual mag ni tude of co or di nates. This
un de sir able prop erty is elim i nated by con sid er ing a mul ti ply ing fac tor c when ma trix Y is ro -
tated into  cYH: 

c = tr( ) tr( ),YHX YY                                                                                     (9.17)

which leads to the fol low ing sta tis tic:

R = tr( ) - 2(tr( ) ) tr( ).S
2 1 2 2XX YX XY YY                                                      (9.18)
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Fig ure 9.9. Pro crus tes anal y sis. The dis sim i lar ity of two or di na tions of three ob jects (a and b) is mea -
sured by the sum of squared dis tances (1+2+3) be tween the cor re spond ing points in the best fit (c).



How ever, this is no lon ger sym met ric, there fore Gower (1971a) pro posed to nor mal ize the in -
put or di na tions to unit sum of squares right af ter cen tring: 

tr( ) = tr( ) = 1XX YY  .                                                                                       (9.19)

It means that the squared dis tances of points from the or i gin in each or di na tion pro duce a unit
sum. For mula 9.18 is then cal cu lated from the nor mal ized con fig u ra tions; and the re sult is
now ab bre vi ated as d2. As Sibson (1978) pointed out, RS

2   may be nor mal ized di rectly:
 S SR 2 tr( )XX .                                                                                             (9.20)

This mea sure ranges from 0 to 1. The re la tion ship be tween d2 and S is:
d S

2 2 1 1  ( )  .                                                                                           (9.21)

It fol lows im me di ately that the value of d2 falls into the in ter val [0,2], 0 in di cat ing per fect fit,
2 re flect ing the max i mum pos si ble de par ture of one or di na tion from the other.

As an ex am ple. let us com pare the PCA and COA or di na tions of the ob jects (col umns) of
Ta ble A1. Ac cord ing to the first two axes (Fig ures 7.2 and 7.14), the value of d2 is 0.1, which
seems quite low. We can not make more state ments on the re sult, how ever, un til a ref er ence
ba sis is avail able for this com par i son (see next sec tion). It is noted that for the first three di -
men sions there is an in ev i ta ble in crease of squared dis tances (d2 = 0.309), the rel a tive change
in di cat ing that the two or di na tions dif fer most mark edly along axis 3.

9.2.5 Com par i son of re ar ranged ma tri ces

The need of com par ing re ar ranged ma tri ces rarely ap pears in the lit er a ture, al though the com -
par i son of re ar range ments ob tained man u ally or via ob jec tive meth ods is as in ter est ing as the
eval u a tion of other OUC types. Here, the method de vel oped for the com par i son of
cross-partitioned block clas si fi ca tions (Podani & Feoli 1991) is in tro duced briefly. The trans -
for ma tion met ric be tween par ti tions (For mula 9.7) is mod i fied for this pur pose. Let Xi and Xj
be two re ar ranged data ma tri ces of size nm, with p clus ters for rows and q clus ters for col -
umns in both. The first task is to de ter mine the min i mum num ber of rows and col umns to be
re lo cated in Xi to get Xj (or vice versa). The two row- and the two col umn-classifications are
com pared sep a rately to de rive the val ues of M Mij rows ij columns( ) ( )and  (for brev ity, MINDMT is
re placed here by M). These pro vide the num ber of data val ues to be moved:

K mM nM M Mij ij sorok ij oszlopok ij sorok ij oszlo  ( ) ( ) ( ) ( pok )                                                  (9.22)

which may be di vided by the pos si ble max i mum to ob tain the  in dex: 

 ij
ij rows ij columns ij rows ij columnsmM nM M M


 ( ) ( ) ( ) ( )

m M n M M Mij rows ij columns ij rows ijmax max max max( ) ( ) ( ) (  columns)

 .                     (9.23)

Its range is [0,1], 0 in di cat ing per fect agree ment, 1 show ing max i mum dis crep ancy. 
The com par i son of ma tri ces re ar ranged by seriation is achieved through the com par i son of 

row and col umn per mu ta tions for data ma tri ces, and row per mu ta tions for re sem blance ma tri -
ces. The strat egy is that row-wise and col umn-wise dis po si tions are counted and then summed 
for data ma tri ces, whereas only the rows are con sid ered for re sem blance ma tri ces. Let the row
and col umn in di ces in the first ma trix be given by i and j, re spec tively, and the in di ces of the
cor re spond ing rows and col umns in the sec ond ma trix be de noted by  y(i) and y(j). Then, the
de sired quan tity will be ob tained as
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12
1 1

, | ( ) | | ( ) |   
 
 
i

n

j

m
i y i j y j  .                                                                     (9.24)

Only the first term is used for re sem blance ma tri ces. A mea sure more el e gant than this is anal -
o gous to MINDMT or the nni met ric and is de fined as the min i mum num ber of neigh bor ing
rows and col umns to be in ter changed iteratively in the first ma trix to ob tain the sec ond. As ex -
pected by the trained reader, the de ter mi na tion of this tran si tional mea sure is a much harder
prob lem than cal cu lat ing For mula 9.24.

9.3 Hypothesis testing, expectations and distributions

The pairwise com par i son of re sults pro vides a dis sim i lar ity mea sure which is ei ther con -
strained to lie be tween fixed lim its or has no the o ret i cal up per bound (Func tion 9.11 is an ex -
am ple for the lat ter). The lack of up per bound poses no prob lems un til we re main within the
same meta-analysis such that the num ber of ob jects and other pa ram e ters of the sur vey do not
change. Even the fixed up per bound, usu ally 1, is of lit tle help when ever dis sim i lar ity val ues
com ing from dif fer ent sur veys are to be con trasted. Can we surely say that a dis sim i lar ity of d2 

= 1.42  be tween two or di na tions of 40 ob jects im plies greater dis agree ment than an other value 
of d2 = 1.40 cal cu lated for two or di na tions of 10 ob jects? Unexperienced an a lysts might say
that d2 ranges from 0 to 2 re gard less the value of m, con se quently the dif fer ence of 0.02 is a
true in di ca tion of a slightly higher dis crep ancy be tween the 40-object or di na tions. A sta tis ti -
cally-minded in ves ti ga tor, how ever, can not make such state ments! Cor rect com par i sons be -
tween dis sim i lar i ties can only be made if the ref er ence dis tri bu tion of the mea sure is known,
to gether with all of its pa ram e ters, es pe cially the ex pec ta tion (mean). In the ex am ple above,
for m = 40 the dis sim i lar ity value of 1.42 is much be low the mean, while for m = 10 the value
of 1.40 is far be yond the ex pec ta tion! Thus, a value of 1.42 im plies a rel a tively strong agree -
ment be tween 40-object or di na tions, whereas 1.40 for 10-object or di na tions in di cates quite
high dis sim i lar ity. “Ev ery thing is rel a tive”, there fore any state ment based on the nu mer i cal
val ues only would be un wise. Fur ther more, knowl edge of the ref er ence dis tri bu tion is ab so -
lutely nec es sary if we wish to make a sig nif i cance test of the dis sim i lar ity mea sure. We may
want to tell whether two OUCs ob tained in de pend ently for the same ob jects are more sim i lar
than ex pected for ran dom OUCs (sig nif i cant re sult), or their dis sim i lar ity falls into the range
which char ac ter izes most (usu ally 95%) of the ran domly gen er ated OUC pairs any way (lack
of sig nif i cance). By ad dress ing these ques tions, we reached a chal leng ing and rap idly de vel -
op ing area of multivariate sta tis tics.

Our prob lems are fur ther com pli cated by the fact that the un der ly ing dis tri bu tion of most
dis sim i lar ity mea sures for OUCs is un known. An ex cep tion is the par ti tion met ric (For mula
9.12) whose ex act dis tri bu tion has been de rived up to 16 ob jects (Hendy et al. 1984). Some pa -
ram e ters of cer tain mea sures of cladogram dis sim i lar ity are also known (Steel & Penny 1993). 
Usually, how ever, for prac ti cal prob lem sizes the dis tri bu tions are not avail able or, if some
the ory is al ready de vel oped, the com pu ta tions are ex ceed ingly dif fi cult and im prac ti cal. The
so lu tion is of fered by Monte Carlo sim u la tion al go rithms, or more pre cisely, a sub set of these
meth ods: the ran dom iza tion and per mu ta tion tests. 

Comparative evaluation of results 331



The prin ci pal is sue in Monte Carlo sim u la tion is the for mu la tion of a base line sit u a tion
cor re spond ing to the null-hypothesis. When we sit down and think over the ac tual prob lem, it
may turn out very quickly that the choice among dif fer ent vari ants of Monte Carlo sim u la tion
is not as easy as ear lier thought. Monte Carlo meth ods, in the strict est sense of the word, are
used if the dis tri bu tion should re fer to ran domly gen er ated OUC pairs and we can say that any
OUC is equally likely to oc cur in the ran dom sam ple. Using an ap pro pri ate ran dom num ber
gen er a tor we sim u late, say, 999 pairs of dendrograms with ran dom hi er ar chi cal lev els and en -
tirely ran dom bi fur ca tions (the ex act al go rithm is not es sen tial at this point, but see Lapointe
& Legendre 1991, Podani 2000). The dis sim i lar ity is cal cu lated for ev ery pair of dendrograms 
and then the 999 val ues are ar ranged into cat e go ries to draw a fre quency his to gram of dis sim i -
lar i ties. The ac tual dis sim i lar ity to be tested, d, is the 1000th value. Using the 1000 in stances of 
the dis sim i lar ity mea sure we may es ti mate the prob a bil ity that for ran dom dendrograms we
get a dis sim i lar ity less than or equal to d.  If this prob a bil ity is lower than the pre vi ously spec i -
fied sig nif i cance level  (usu ally 0.05), then the two ac tual dendrograms can be con sid ered
sig nif i cantly sim i lar and the null-hypothesis is re jected. For a ran dom sam ple of 1000 and  =
0.05, this hap pens if at least 950 of the sim u lated dis sim i lar i ties ex ceed d.  In the op po site case, 
we re tain the null-hypothesis by say ing that the ac tual d value could be ob tained for ran dom
pairs of OUCs (at the given ) and the sim i lar ity of the two dendrograms is not sig nif i cant.
The per mu ta tion tests2are based on sim i lar grounds, with the only sub stan tial dif fer ence be ing 
in the man ner the sam ple OUCs are gen er ated. In this case, the OUCs are not en tirely ran dom;
only the ob jects are per muted by ran dom relabeling. In other words, the ar range ment of the
ob jects is changed while the ba sic struc ture of the OUCs (a con fig u ra tion of points in an or di -
na tion, a tree graph, etc.) re mains con stant.  The so-called ex act per mu ta tion tests de rive the
sam pling dis tri bu tion of the mea sure by gen er at ing all the pos si ble per mu ta tions of ob jects, a
strat egy re stricted to rel a tively small prob lem sizes. In prac tice, only an es ti ma tion can be
made based on a lim ited num ber of ran dom per mu ta tions. The larger this num ber, the better
the aproximation to the ‘true’ dis tri bu tion. For dendrograms, Lapointe & Legendre (1992)
found that 1000 pairs pro vided a rea son ably good es ti mate, while for ma tri ces Jack son &
Somers (1989) sug gested as a rule of thumb a min i mum of ten-to-hundred thou sand sim u la -
tions. In ex am in ing the dis tri bu tion of mea sure 9.7, Podani (1986) found that 5000 pairs ap -
prox i mated very well the ex act dis tri bu tion. Clearly, there are no gen er ally valid guide lines
and much de pends on prob lem sizes, but a pro cess in which sam ple size is in creased grad u ally
along with re peated tests may be help ful to reach a sta ble re sult. Need less to say that per mu ta -
tion tests are typ i cal com puter-intensive pro ce dures of con tem po rary sta tis ti cal anal y sis.

 

The ba sic strat e gies of Monte Carlo and per mu ta tion tests are sum ma rized for the ma jor
types of OUCs in Ta ble 9.1. A “pure” Monte Carlo sim u la tion is usu ally more dif fi cult to
achieve than sim ple per mu ta tion tests. The num ber of pos si ble OUCs , from which the sim u la -
tions de rive a sam ple, is usu ally very high, of ten in fi nite, in sharp con trast to the rel a tively
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2 The terms permutation test and randomization test are practically synonyms (Manly 1991). In the present case,
the word permutation appears more straightforward, better indicating how the distributions are generated.



small num ber of pos si bil i ties in the per mu ta tion tests. The Monte Carlo meth ods are more
gen eral, while the per mu ta tion tests are suited to the ac tual cir cum stances. 

9.3.1 Ma trices

The dif fer ence be tween Monte Carlo sim u la tion and the per mu ta tion-based strat egy is il lus -
trated through the sig nif i cance test of ma trix cor re la tion, a method al most ex clu sively used for 
eval u at ing re sem blance ma tri ces D and E (Man tel  1967). Clearly, com par ing the ac tual cor -
re la tion with a thresh old value found in a stan dard sta tis ti cal ta ble would be un wise be cause
the val ues within each ma trix are strongly in ter de pen dent. In stead, the rows (and there fore the
col umns) of ma trix D are ran domly per muted many times, and each ‘per turbed’ ma trix is also
cor re lated with ma trix E.  Then, the sig nif i cance of rDE is eval u ated us ing the em pir i cal dis tri -
bu tion of the cor re la tions com ing from the per mu ta tions (Man tel test).3 Ac cord ing to the
null-hypothesis, the mech a nisms gen er at ing the val ues in D are in de pend ent from those re -
spon si ble for the struc ture im plied by E so that it is likely to get rDE even though one of the
ma tri ces is com pletely ‘con fused’. If it is not true, then the back ground mech a nisms for the
two ma tri ces are not in de pend ent, the per mu ta tions de stroy the ba sic struc ture and there fore
the null hy poth e sis is re jected.

In ad di tion to per mu ta tions, a test may be based on en tirely ran dom dis tance ma tri ces. The
key stone in this ap proach is to sim u late dis tances guar an tee ing that they cor re spond to some
dis tance/dis sim i lar ity struc ture, i.e., they are not mere ran dom num bers.  A pos si bil ity is to
ran domly per mute the rows and the col umns of the orig i nal data ma trix (if avail able) and to
cal cu late the cor re la tion be tween the D ma tri ces ob tained from ran dom ized data and the other
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Ta ble 9.1. Com par i son of the strat e gies of Monte Carlo sim u la tion and per mu ta tion tests for dif fer ent
types of re sults. 

Result  (OUC) “pure” Monte Carlo
simulation

Permutation test

Resemblance matrix Entirely random 
resemblance values

Columns (and rows) 
randomly interchanged

Hard partition Random assignment of objecs into k
classes, regardless of their size

Random assignment of objects into
k classes such that original group sizes

are maintained

Fuzzy partition Random weights for each object such
that their sum is 1

The original weights are retained, the
objects are randomly assigned to them

Dendrogram Random levels, random bifurcations,
randomly selected objects

The objects in terminal positions are
randomly mixed

Rooted cladogram Random branch lengths, bifurcations
and object assignments

As above

Ordination Random coordinates in every
dimension

Original positions retained, objects
randomly relabeled.

3 More precisely, it was the cross-products, rather than the correlations, that Mantel used in the computations. It is
a reasonable choice because the cross-products are themselves sensitive to permutations, while the other terms in
the correlation measure are invariant. If the entries in both matrices are standardized by standard deviation
beforehand then the cross products will be equal to the regression coefficient.of D with repect to E and vice versa.



ma trix E which re mains in tact, and to re peat the pro ce dure many times. The dis tri bu tion of the 
orig i nal dis sim i lar ity mea sure is also of some con cern, be cause it has some in flu ence on the
per mu ta tions (Hajdu 1981, Gower & Legendre 1986). In fact, the spe cific be hav ior of the for -
mula should also be built into the sim u la tion model, al though the pro ce dure may be come too
cum ber some this way.

As an ex am ple, let us ex am ine the dune veg e ta tion data again (Ta ble A4). The dis tances
among stands are cal cu lated us ing spe cies scores to pro vide the first ma trix, whereas the sec -
ond dis tance ma trix is de rived from the ‘en vi ron men tal’ data. Ac cord ing to the null hy poth e -
sis, the two groups of vari ables are in de pend ent, so that the value of ma trix cor re la tion is less
than or equal to 100(1-)% of cor re la tions ob tained from per muted ma tri ces. The ac tual value 
of ma trix cor re la tion is 0.44, which is higher than all the sim u lated val ues (Fig. 9.10a). Thus,
the null hy poth e sis is re jected: the two groups of vari ables lead to sig nif i cantly sim i lar dis -
tance ma tri ces, in di cat ing de pend ence of spe cies per for mance on the en vi ron ment. 

The sec ond ex am ple is more ar ti fi cial, yet use ful to il lus trate the op po site sit u a tion.
Starting from Ta ble A1, we ex am ine whether the dis tance ma trix of stands cal cu lated for
monocots (7 spe cies) sig nif i cantly cor re lates with an other ma trix based on the di cots (5 spe -
cies). The cor re la tion is 0.091, sug gest ing im me di ately that the two ma tri ces have lit tle to do
with each other. This is con firmed by the per mu ta tion test: 31% of the sim u lated val ues are
larger, 69% are smaller than 0.091 (Fig. 9.10b). In other words, ev ery third per muted value is
higher than the ac tual sta tis tic so the null-hypothesis is ac cepted: the two groups of an gio -
sperms pro vide ma tri ces as dis sim i lar as the randomizations. This state ment is valid for this
ex am ple only; bear in mind that the va lid ity of the Man tel test is re stricted to the two ma tri ces 
be ing com pared!

9.3.2 Hard par ti tions

The dis tri bu tion of mea sures of par ti tion agree ment is also best-examined by Monte Carlo
sim u la tions, even though in some cir cum stances some pa ram e ters could be de rived ex actly
(cf. Hubert & Arabie 1985). Sup pose that a d dis sim i lar ity value for par ti tions P and Q is to be
tested for sig nif i cance. The num ber of clus ters is s and t re spec tively, with clus ter sizes  pi and
qj. In the plain Monte Carlo case, both the num bers of clus ters and the clus ter sizes are re sults
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Fig ure 9.10. Fre quency his to gram of ma trix cor re la tion in a Man tel test based on 1000 per mu ta tions
for a: dis tances cal cu lated from the dune veg e ta tion data for spe cies and for en vi ron men tal vari ables
(Ta ble A4); b: dis tance ma tri ces cal cu lated sep a rately for monocots and di cots of Ta ble A1. In the lat -
ter case, ar row points to the po si tion of the test sta tis tic in the dis tri bu tion. 



of ran dom ef fects. How ever, it is more rea son able to keep at least s and t con stant dur ing the
sim u la tions. Even more at trac tive is the per mu ta tion test in which the ran dom par ti tions are
gen er ated with out chang ing the mar ginal val ues of the cross-classification ta ble, i.e., pi and qj
(Hubert & Arabie 1985).

The in ter me di ate sit u a tion, with s and t fixed (and s = t for all sim u lated par ti tions), is il -
lus trated for the MINDMT mea sure for 80 ob jects (Fig ure 9.11). As seen, when s in creases the 
ex pected dis sim i lar ity also in creases, whereas the dis tri bu tion be comes less skewed. The ef -
fect of fix ing clus ter sizes is shown by the per mu ta tion based-simulations (Fig. 9.12). For
com par i son, the first ex am ple shows the most gen eral case with free class sizes (Fig. 9.12a)
for which the dis tri bu tion agrees well with the his to gram of Fig. 9.11, case of s = 2.  At fixed
class sizes, with grad u ally in creas ing the dif fer ence be tween the size of the two classes, the
ex pec ta tion de creases and the dis tri bu tion be comes more sym met ric (Fig. 9.12b-e). 

It is worth ex am in ing the sig nif i cance of changes de picted by Fig. 9.4. The num ber of
spe cies for which we have a ‘sig nif i cant’ de par ture from the ref er ence clas si fi ca tion may be
of in ter est. How ever, no for mal sta tis ti cal test can be made in this case be cause the par ti tions
to be com pared are not in de pend ent, be ing partly based on the same sub set of vari ables. Nev -
er the less, the ‘crit i cal val ues’ do pro vide a good ba sis for the com par i son of func tions of par -
ti tion agree ment. Let us choose the 95% ‘prob a bil ity level’. For each co ef fi cient, the
sim u la tions pro vide the thresh old value be low which the two par ti tions are sig nif i cantly sim i -
lar. Clus ter sizes were not fixed, be cause clus ter sizes changed dur ing spe cies re duc tion. The
thresh old val ues are: 0.5 (MISC), 0.655 (1–LAS), 0.445 (1–RAND), 0.585 (1–JAC) and
0.415 (1–OCH). Now it be comes clear why are so di verg ing the val ues for the very same
com par i son. The dis tri bu tion var ies with the co ef fi cient so that each value may only be com -
pared to its own sig nif i cance thresh old, rather than to the val ues pro vided by other for mu lae.
A fast scru tiny of the di a grams shows that spe cies re duc tion to as low as 5 is not enough to
mod ify the start ing par ti tion to an ex tent nec es sary for a ‘significant’change for any co ef fi -
cient.

9.3.3 Fuzzy par ti tions

Fuzzy par ti tions are de scribed by clus ter mem ber ship weights (co ef fi cients of be long ing)
which pro vide a to tal of 1.0 for each ob ject.  In the most gen eral Monte Carlo sit u a tion, en -
tirely ran dom weights could be gen er ated such that this con di tion is met. The per mu ta tion
tests, on the other hand, main tain the orig i nal val ues while per mut ing the ob jects. In other
words, the rows of the weight ma trix U1 (Sec tion  4.3) are ran domly min gled while the other
ma trix, U2, re mains un changed. The col umns and there fore the col umn to tals (the sum of
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Fig ure 9.11. The fre -
quency his to gram of
the par ti tion agree ment
mea sure MINDMT ob -
tained by Monte Carlo
sim u la tion for m = 80,
s = t = 2, 3, 4, 5, 6. The 
points are con nected
only for clar ity. Each
dis tri bu tion is based on 
the com par i son of
10000 pairs of par ti -
tions (Podani 1986).



weights for each class) are not changed ei ther to en sure com pat i bil ity with the per mu ta tion
test of the agree ment of hard (crisp) par ti tions. This topic is very lit tle in ves ti gated and de -
tailed sim u la tion stud ies are in or der. 

9.3.4 Dendrograms and cladograms

Dendrograms and cladograms are per haps the most com plex math e mat i cal ob jects among all
types of OUCs en coun tered in the anal y sis of multivariate bi o log i cal data. Their com par i son,
as we have seen above, as well as their sim u la tion, as we shall see be low, rep re sent an in tri cate 
sub ject area. The topic is very far from be ing ex hausted even in math e mat ics, but we know
that there are a few ba sic as sump tions that must be ful filled for a cor rect test to be made. These 
in clude:

 The set of sim u lated trees is in fact a sam ple from the uni ver sal set of all pos si ble
trees. We must guar an tee that each pos si ble tree has the same chance of be ing se -
lected. The ques tion of what trees are in fact pos si ble is al ways con text-dependent
(see be low).

 The pro cess of the sim u la tion should be com pat i ble with the for mula to be tested. For
ex am ple, if the mea sure is in sen si tive to the hi er ar chi cal lev els, such as co ef fi cients
de rived from path dif fer ence and subtree mem ber ship di ver gence, then the num ber of
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Fig ure 9.12. Es ti mated
prob a bil ity dis tri bu tion of 
MINDMT for m = 80, s =
t = 2 with out fix ing clus -
ter sizes (a) and with
fixed clus ter sizes shown
in the up per cor ner (b-e).
Each his to gram is based
on the com par i son of
10000 pairs of par ti tions
(Podani 1986).



pos si ble dendrograms – and cladograms – is ob vi ously Vm (For mula 5.16), and each
of the Vm trees may ap pear in the sim u la tion (e.g., Shao & Rohlf 1983). If the mea sure
does re flect the or der of lev els (par ti tion mem ber ship di ver gence), then the ref er ence
dis tri bu tion should rely upon  Hm dif fer ent dendrograms (For mula 5.17) – a value
con sid er ably larger than Vm. The lat ter case is dis cussed by Lapointe & Legendre
(“dou ble per mu ta tion al go rithm”, 1991)4  and – with less em pha sis – by Steel &
Penny (“Dtip” mea sure, 1993). The most dif fi cult case is the sim u la tion of hi er ar chi -
cal lev els to pro vide a ba sis for test ing cophenetic com par i sons. Here, the num ber of
pos si ble dendrogram struc tures is again  Hm, but ran domly gen er ated lev els give rise
to an in fi nite num ber of pos si ble trees. Al though Lapointe & Legendre (1991: 189)
con sider the pos si bil ity of such sim u la tion, they ad mit that the best strat egy is to re -
strict the pos si ble hi er ar chi cal lev els to those ac tu ally ob served in the two dendro -
grams be ing com pared.

 The above two para graphs con cern the plain Monte Carlo sim u la tions. Their re la tion -
ship to per mu ta tion tests is some what un clear at the mo ment. The com par i son of two
dendrograms fol lows the logic of Man tel tests only if the to pol o gies and lev els are
fixed while the ob jects are per muted over the ter mi nal ver ti ces of ei ther (or both?) of
the dendrograms.  Ap par ently, Lapointe & Legendre (1995) pre fer the full ran dom -
iza tion strat egy against per mu ta tions. How ever, it is eas ily con ceiv able that we do not 
re gard all pos si bil i ties to be equally likely in the ran dom sam ple. Chained
dendrogram shape is a case in point. Chaining is com monly ob served with sin gle link
clus ter ing while ex cep tional by com plete link age (re call the ex am ples dis cussed in
Chap ter 5). There fore, if sin gle link age is the strat egy used, then bal anced
dendrogram shapes should be con sid ered much less likely than chains and com plete
ran dom iza tion would be “bi ased” in some sense.

Let us see a more con crete ex am ple. The dis sim i lar ity be tween the two unrooted
cladograms of Fig ure 6.1 may only be tested us ing the per mu ta tion-based ap proach. One tree
is fully di chot o mous whereas the other has many multifurcations, hence full ran dom iza tion is
not jus ti fied (Penny et al. 1993). Ex pressing tree to pol o gies in terms of two path dif fer ence
(PD) ma tri ces, their dis tance is 126. Af ter ten mil lion per mu ta tions, this dis tance proved to be
highly sig nif i cant, be cause this value or an even lower dis tance oc curred less than 100 times.
In other words, the ac tual sta tis tic is sig nif i cant at the prob a bil ity level of p<0.00001. The
con clu sion is that the lan guage tree and the ge netic tree are sta tis ti cally sim i lar – al though the
ex pla na tion of back ground ef fects is a dif fer ent mat ter.

As a fur ther il lus tra tion of per mu ta tion tests, group av er age clus ter ing was ap plied to the
two dis tance ma tri ces used in the sec ond ex am ple in Sub sec tion 9.3.1. The re sult ing
dendrograms are pre sented in Fig ure 9.13. Since the dis tance ma tri ces were not sig nif i cantly
sim i lar, we can ex pect that the dendrograms de rived from them will not be sim i lar ei ther. We
cal cu late two val ues, the ma trix cor re la tion be tween the re spec tive PD ma tri ces and be tween
the par ti tion mem ber ship di ver gence (PMD) ma tri ces. The re sults are  –0.01 and –0.22, re -
spec tively. In the his to gram based on 1000-1000 sim u lated val ues ob tained for en tirely ran -
dom dendrograms, these sta tis tics fall into the ac cep tance re gion at the prob a bil ity level of 
= 0.05. Nev er the less, the two cor re la tions do not im ply the same thing which turns out if we
care fully ex am ine the  dis tri bu tions. The PD-based cor re la tion is al most equal to the mean of
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sim u lated val ues (–0.004), whereas the cor re la tion us ing par ti tion mem ber ships is very close
to the thresh old of sig nif i cant dif fer ence (at  = 0.05, the sim u lated thresh old is –0.267 while
the mean is 0.004). In other words, re gard ing the branch ing pat tern the two dendrograms dif -
fer to the ex tent ex pected for two ran dom ones whereas ac cord ing to the or ders their large dis -
tance is a rare event even for ran dom dendrograms We may con clude that mea sures of
dendrogram dis tance do not say much by them selves; knowl edge of the un der ly ing dis tri bu -
tion in creases interpretability of the sta tis tics. 

9.3.5 Or di na tions 

Ran dom or di na tions are eas ier to gen er ate than dendrograms. For ex am ple, Podani (1991)
sug gested to sim u late ran dom and uni form co or di nates for the ob jects in the pre-selected k di -
men sions to serve as a ba sis of hy poth e sis test ing. Multivariate nor mal ity of ran dom co or di -
nates or other Monte Carlo mod els are also con ceiv able in the der i va tion of a ran dom sam ple
of or di na tions. In these cases, we do not have to worry about the scale on the axes, be cause
For mula 9.21 of Pro crus tes anal y sis im plies nor mal iza tion to unit sum of squared dis tances
from the or i gin. 

Per mu ta tion tests main tain the orig i nal co or di nates while relabeling the points ran domly.
Of course, this op er a tion im plies a null hy poth e sis com pletely dif fer ent from the plain Monte
Carlo case, be cause the only point scat ter al lowed in the sim u la tions is the ac tual one.  This
must be re mem bered when eval u at ing the test sta tis tics. How ever, as the fol low ing ex am ple
dem on strates, the dis crep ancy be tween full ran dom iza tion and per mu ta tion de creases when
the num ber of di men sions is in creased. 

The PCA and COA or di na tions of ob jects of Ta ble A1 were al ready com pared at the end
of Sub sec tion 9.2.4. Let us now gen er ate the ref er ence dis tri bu tion of d2 for two and three di -
men sions based on full ran dom iza tion us ing the uni form dis tri bu tion (Fig. 9.14a) and on ran -
dom per mu ta tions (Fig. 9.14b). Be ware that the two or di na tions be ing com pared are not
in de pend ent since they are cal cu lated from the same data. Thus, we do not per form a for mal
sig nif i cance test as such; the sim u lated dis tri bu tions will only be used to as sess the de par ture
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                   a                   bFig ure 9.13. Group av er age clus ter ing of
sam ple sites (Ta ble A1) from Eu clid ean dis -
tances cal cu lated us ing monocots (a) and di -
cots (b).



of d2 from the ex pec ta tion, thus achiev ing some ‘nor mal iza tion’ of the co ef fi cient. The sim u -
lated means are 1.14 and 0.95, re spec tively, for two and three di men sions, re gard less the sim -
u la tion strat egy. The com par i son of ac tual dis sim i lar i ties (0.1 and 0.309) to these ex pec ta tions 
shows that in two di men sions the two or di na tions are rel a tively more sim i lar than in three di -
men sions, much more than one might think by judg ing the ab so lute dif fer ence be tween the
val ues (0.209). The ma jor dif fer ence be tween the sim u lated his to grams is that the ranges are
slightly wider for the per mu ta tions (solid lines, Fig. 9.14) than for the ran dom uni form strat -
egy. 

9.3.6 Un planned com par i sons – in gen eral

The ex am ples dis cussed thus far share a com mon prop erty: when there were more than two
OUCs com pared si mul ta neously we did not per form any sig nif i cance test of their dis sim i lar i -
ties; hy poth e sis test ing was re stricted to sin gle pairs only. We had a good rea son to do so: sta -
tis ti cal anal y sis and the choice of the prob a bil ity level in mul ti ple com par i sons must be done
very care fully. Sup pose that we have k re sults to be com pared, so that the to tal num ber of pairs 
is g = k(k–1)/2. If we se lect cer tain pairs a pri ori such that they are in de pend ent (OUC1 vs
OUC2, OUC3 vs OUC4, and so on), then the test may be based on the sim u lated co ef fi cient as
decribed pre vi ously. How ever, if we do not know in ad vance which in de pend ent pairs are of
in ter est to us, but rather we wish to se lect ‘sig nif i cantly’ sim i lar OUC pairs from the set of g
pairs (a pos te ri ori test), then the usual thresh olds do not ap ply be cause of the ac cu mu la tion of
Type I er ror. If the test were made in the usual man ner, then more val ues would be re garded
(er ro ne ously) to be sig nif i cant than there ac tu ally are at the given prob a bil ity level. To avoid
this, a more rig or ous test is to be made by in creas ing the thresh old dis sim i lar ity (right-tailed
tests) or de creas ing it (left-tailed tests). There are sev eral pos si bil i ties to ac com plish this, but
we show only two: 

 The thresh old is re de fined such that the to tal Type I er ror for all the g com par i sons does
not ex ceed . In or der to do it cor rectly, the prob a bil ity level for a sin gle pair must be low -
ered ac cord ing to
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Fig ure 9.14. The dis tri bu tion of Pro crus tean dis sim i lar ity (d2, For mula 9.21) be tween two or di na tions
of 8 ob jects in two (a) and three (b) di men sions. Dotted lines (fully ran dom case) and solid lines (per -
mu ta tion) are used to im prove clar ity of the his to grams.



       1 1 1( ) g                                                                                        (9.25)

whereas the ref er ence dis tri bu tion is the same as for two OUCs. This for mu la tion has
been orig i nally sug gested for the mul ti ple com par i son of group means (cf. Sokal &
Rohlf 1981a).

 An other pos si bil ity that de serves men tion is the sim u la tion of the dis tri bu tion of ex -
treme val ues. In the gen eral Monte Carlo model, a set of k ran dom OUC is gen er ated
while in the per mu ta tion case, all OUCs in ques tion are per muted (ran domly
relabeled). Then, com par i sons are made in all pos si ble pairs and the ex treme dis sim i -
lar ity (usu ally the min i mum) is found. This is re peated many, say, 1000 times to ob -
tain the dis tri bu tion of ex treme val ues de rived from com par i sons that are not
in de pend ent. Af ter se lect ing a prob a bil ity level , we iden tify the as so ci ated thresh -
old in the his to gram of ex tremes. This is used in test ing whether any value from the g
com par i sons of orig i nal OUCs is sig nif i cant.

Let us ex am ine the ef fect of the above re stric tions upon the com par i son of par ti tions us ing 
the MINDMT for mula. As sume that there are 80 ob jects, di vided into two clus ters in each of
five in de pend ently de rived clas si fi ca tions. In the planned strat egy with = 0.05, from the dis -
tri bu tion on the left of Fig. 9.11 we have that the thresh old is MINDMT = 31, so that an ac tual
dis sim i lar ity equal to or lower than this value would in di cate sig nif i cant sim i lar ity be tween a
given pair of par ti tions. The five clas si fi ca tions form 10 pairs whose com par i sons can not rely
upon the same crit i cal value. From the sim u lated dis tri bu tion of ex tremes (min ima), at  =
0.05 we ob tain that the ad justed thresh old of MINDMT is 27. Con se quently, we shall find
fewer pairs of OUCs to be sig nif i cantly sim i lar than would oth er wise be de tected by dis re -
gard ing the ac cu mu la tion of Type I er rors. Note that, for ten pairs, For mula 9.25 pro vides ‘
= 0.005, lead ing from the sim u la tion of the dis tri bu tion of MINDMT (Fig. 9.11) to the same
crit i cal value (27). 

9.4 The consensus approach

The term con sen sus, quite fa mil iar for us from ev ery day po lit i cal dec la ra tions, re fers in bi ol -
ogy to a syn the sis of k al ter na tive and equally im por tant re sults de rived for the same set of ob -
jects.  This new re sult em pha sizes agree ments among the com pet ing OUCs and is usu ally
con sid ered to be a more ad e quate rep re sen ta tion of inter-object re la tion ships than any start ing
OUC by it self. This is partly be cause con sen sus gen er a tion may elim i nate the ef fects of our
sub jec tive choices re gard ing the num ber of vari ables, data types, re sem blance func tions and
clus ter ing or or di na tion pro ce dures nec es sar ily made dur ing pro cess ing of our data. Also,
when ever a pro ce dure yields sev eral dif fer ent, yet equally op ti mal fi nal re sults (e.g., clado -
grams), the only res o lu tion is their syn the sis into a new re sult. A first glance at the vast lit er a -
ture of rel e vant meth ods sug gests that al though con sen sus gen er a tion is con ceiv able for any
kind of re sults of multivariate data ex plo ra tion, hi er ar chi cal clas si fi ca tions rep re sented by
dendrograms and cladograms have re ceived the most at ten tion.

9.4.1 Con sen sus par ti tions 

First, hard par ti tions con tain ing disjunct, non-overlapping classes will be con sid ered. The
con sen sus method aims to syn the size k2 par ti tions of m ob jects – in which the num ber of
classes is not nec es sar ily the same – into a new par ti tion. Al though there have been sev eral at -
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tempts to find a sin gle con sen sus par ti tion (see be low), Neumann & Norton (1986) pointed out 
that the con sen sus prob lem usu ally has sev eral, equally ac cept able so lu tions. All of them can
be de rived from the so-called strict con sen sus de fined as the unique par ti tion in which any
class j con tains only those ob jects that be long to the same clus ter in all of the k start ing clas si fi -
ca tions. This is not con tra dic tory with any ini tial par ti tion but nev er the less has the po ten tial
dis ad van tage that there may be many, even m con sen sus groups if the dif fer ences among par ti -
tions are high. There fore, the prac ti cal util ity of strict con sen sus par ti tions is of ten ques tion -
able. Suc ces sive fu sions of classes of the strict con sen sus pro vide a se ries of in ter me di ate
con sen sus par ti tions in each group of which the ob jects oc curred to gether at least in k–1, k–2,
k–3,... par ti tions. Ul ti mately, these fu sions pro vide the other ex treme syn thetic clas si fi ca tion,
the loose con sen sus. In this, all ob jects that be long to gether in at least one of the ini tial par ti -
tions ap pear in the same group. The dis ad van tage of loose con sen sus is that the pres ence of a
few ob jects of un cer tain group mem ber ship leads to a sin gle triv ial con sen sus group. Two or
more loose con sen sus clus ters in di cate that no mem ber of any group was ever clus tered to -
gether with any ob ject from any other group, i.e., the con sen sus clus ters are fully iso lated. 

To il lus trate the above con sen sus se ries, let us con sider the fol low ing sam ple par ti tions of
10 ob jects:

P1 = {1, 2, 3, 4}   {5, 6, 7, 8, 9, 10}
P2 = {1, 2, 3, 4, 5, 6}   {7, 8, 9, 10}
P3 = {1, 2, 3, 4, 5}   {6, 7, 8, 9, 10}                (9.26)
P4 = {1, 2, 3, 7}   {4, 5, 6, 8, 9, 10}

Their strict con sen sus par ti tion is given by:

Ps = {1, 2, 3} {4} {5} {6} {7} {8, 9, 10}

There are sev eral in ter me di ate con sen sus re sults, for ex am ple: 

Pc = {1, 2, 3} {4, 5, 6} {7, 8, 9, 10} ,

but each start ing par ti tion could have also been men tioned as an in ter me di ate OUC! Finally,
one eas ily ver i fies that the loose con sen sus is a triv ial one, be cause all ob jects are as signed to
a sin gle group. 

The above ex am ple dem on strates con vinc ingly that the num ber of pos si ble con sen sus par ti -
tions can be too large even in rel a tively sim ple sit u a tions. Nev er the less, the con sen sus can di -
dates do not ap pear equally mean ing ful. It is of par tic u lar in ter est to de rive con sen sus
par ti tions that re flect agree ments be tween more than 50% of the al ter na tives. Such a ma jor ity
rule does not work for two classes in the ex am ple, be cause ob ject 5 has a very am big u ous po -
si tion (and the ap pli ca tion of the ma jor ity rule is less straight for ward for small and even val ues 
of k). For three clus ters, how ever, we can eas ily find the con sen sus par ti tion:

Pt = {1, 2, 3, 4} {5, 6} {7, 8, 9, 10}

The ob jects of each clus ter in Pt ap pear to gether in at least three com pet ing par ti tions. This is
at the same time an in ter me di ate con sen sus and we can not be sure that there is al ways a unique 
ma jor ity rule con sen sus. Fur ther more, the 50% thresh old is just one, al though im por tant rule,
and one may wish to set the thresh old to be any per cent age larger than 50. An other pos si bil ity
of se lect ing from the in ter me di ate con sen sus paritions is to search for the me dian con sen sus
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par ti tion (cf. Barthélemy & Monjardet 1981). This re quires def i ni tion of a d dis sim i lar ity
func tion mea sur ing par ti tion agree ment. Then, a given par ti tion Pm is the me dian con sen sus of 
the k par ti tions if the fol low ing con di tion is sat is fied: 

i

k

m i c
i

k

c id d
 
 

1 1

( ) min ( ), ,P P P P  .                                                                           (9.27)

In dex c re fers to any in ter me di ate con sen sus par ti tion. In a sense, the me dian con sen sus is on
the av er age the clos est to the al ter na tives but again, we can not be sure that there is a unique so -
lu tion for cri te rion 9.27.

De ter mining the strict con sen sus is an easy task, while ob tain ing the ma jor ity rule and me -
dian re sults is a more dif fi cult (in fact, NP-hard) prob lem, es pe cially for large num bers of ob -
jects. As a prac ti cal heuristics, we can ap ply an agglomerative, hi er ar chi cal con sen sus
gen er a tion pro ce dure (Podani 1989a). The anal y sis starts from dis tance ma trix Dm,m with djk
be ing the num ber of par ti tions in which ob jects j and k do not be long to the same class. The
global op ti mi za tion strat egy (Sub sec tion 5.2.4) is a straight for ward clus ter ing pro ce dure in
this case be cause the strict ness of the con sen sus (i.e., within-cluster av er age dis tances) and the 
iso la tion of ob jects (be tween-cluster av er age dis tances) are si mul ta neously mea sured. The hi -
er ar chy ob tained is a se ries of in ter me di ate con sen sus par ti tions from which the con sen sus for
a par tic u lar num ber of groups is easy to de ter mine. A con cep tual ad van tage of the hierachical
con sen sus is its abil ity to show that sev eral con sen sus re sults may ex ist for a given set of k al -
ter na tives. Diday & Si mon (1976) – with out ref er ence to con sen sus gen er a tion – have pro -
posed ear lier to sub ject ma trix D to com plete link age clus ter ing. 

The hi er ar chi cal con sen sus of non-hierarchical clas si fi ca tions is il lus trated by an ac tual
ex am ple (Podani 1989a). A set of eighty vegetational sam ple plots from the do lo mite rocks of 
Sashegy, Bu da pest) were clas si fied into three classes by six dif fer ent clus ter ing pro ce dures.
The task is to find the con sen sus par ti tion which, if su per im posed on the map of the area, pro -
vides a more gen er ally valid veg e ta tion map than any start ing clas si fi ca tion (Fig. 9.15). Clus -
ters A, B and C may be iden ti fied on the map as the open Fes tu ca-dom i nated com mu nity, the
Bromus grass land and the Sesleria-dom i nated closed grass land, re spec tively.

To fuzzy par ti tions, the me dian con sen sus eas ily ap plies (Podani 1990). The me dian con -
sen sus of k fuzzy par ti tions is de fined as a fuzzy par ti tion with a min i mum sum of squared
diffrences in mem ber ship weights from the oth ers. Let uijh de note the group mem ber ship
weight of ob ject  j for clus ter h in par ti tion i. Fur ther more, let ucjh be the weight in the con sen -
sus par ti tion sought (Fc). If the num ber of classes is p in ev ery par ti tion, then the ob jec tive is to 
min i mize the quan tity

SSQ u uc
i

k

j

m

h

p
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  
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2( )  .                                                                            (9.28)

It is found by ex haus tive search, that is, the k clas si fi ca tions are fit ted to one an other in all the
pos si ble per mu ta tions of clus ters. Dummy classes are added when nec es sary to al low com par -
i son of par ti tions with un equal num bers of classes. There are  p k! 1dif fer ent per mu ta tions, so
that the search is not op er a tional for many classes or many par ti tions. The cen troid method has 
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been pro posed (Podani 1990) to find an ap prox i ma tion to the op ti mum when ex haus tive
search is im prac ti cal. 

Since the hard par ti tions are spe cial cases of fuzzy clas si fi ca tions, a fuzzy clas si fi ca tion as
a sum mary of hard par ti tions ap pears a very nat u ral choice. Hard par ti tions, as their name sug -
gests, are not flex i ble enough and can not be mod i fied to show slight de tails in the con sen sus
ob ject. Of ten, they re quire too many groups in or der to be unique (re call the case of ob ject 5 in
the pro file 9.26). On the other hand, a fuzzy syn the sis of hard clus ters may re flect mi nor de -
tails be cause the clus ter mem ber ship weights are mea sured on a con tin u ous scale. 

The ex haus tive search for a fuzzy con sen sus of par ti tions in pro file 9.26 pro vides the fol -
low ing clus ter mem ber ship weights to two classes (the ma trix is trans posed): 

1.0 1.0 1.0 0.75 0.5 0.25 0.75 0.0 0.0 0.0
0.0 0.0 0.0 0.25 0.5 0.75 0.25 1.0 1.0 1.0

9.4.2 Con sen sus trees

The sum ma ri za tion of al ter na tive re sults into a con sen sus is per haps the most chal leng ing task 
in con tem po rary mo lec u lar sys tem at ics. Re gard less whether dendrograms or cladograms are
used,  only the top o log i cal struc ture of the tree is con sid ered in most cases, whereas the hi er ar -
chi cal lev els and branch lengths are dis re garded (with noted ex am ples, see be low).  Thus, it is
al most al ways im ma te rial whether the OUCs are dendrograms or cladograms. The con sen sus
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Fig ure 9.15. Hi er ar chi cal con sen sus 
of par ti tions: global op ti mi za tion
clus ter ing from six 3-cluster par ti -
tions of 80 sam ple sites (top), and
the pro jec tion of three ma jor groups
of the strict con sen sus (solid line)
and the nearly op ti mal 3-class ma -
jor ity rule con sen sus par ti tion
(doted line) onto the map of the
study area (bot tom).



trees rep re sent a com pro mise in a sense that the strong con di tion of al low ing bi fur ca tions only
has to be re leased, ex cept in triv ial sit u a tions. This is best dem on strated by the strict con sen sus 
trees (Sokal & Rohlf 1981b, Swofford 1991) which – in agree ment with the strict con sen sus
par ti tions – are con strained to show those clus ters only that ap pear in all com pet ing trees. In
other words, if a par tic u lar group of ob jects ap pears in the con sen sus tree, then they were al -
ways clas si fied to gether in the in put trees. There fore, the in ter pre ta tion of a strict con sen sus
tree is fairly easy. 

Let us ex am ine trees a, b and c of Fig. 9.16, sum ma rized into the strict con sen sus tree d.
The clus ter {A, B, C} is the only one that oc curs in all the three dendrograms, il lus trat ing a
dis ad van tage of most strict trees: the pro lif er a tion of politomies. In ex treme cases, as for the
cladograms of Fig. 6.18, all branches of the strict con sen sus tree orig i nate di rectly from the
root (= ‘bush’ or ‘star tree’), which is not a very at trac tive prop erty. In fact, the fewer the
politomies in the con sen sus tree, the more sim i lar are the in put trees. This is mea sured by a
con sen sus in dex dis cussed in 9.4.2.1.

The semi-strict or com bi na tional con sen sus (Bre mer 1990, Swofford 1991, Quicke 1993)
im plies some more re laxed con di tions. The fun da men tal re quire ment here is that no clus ters
of the con sen sus tree should con flict with the start ing trees. Since the pres ence of {A, B, C} in
tree c (Fig. 9.16) does not con tra dict with group {A, B}, the con sen sus tree will be di chot o -
mous for these three ob jects (Fig. 9.16e). If all in put trees are fully dichotomic, then the strict
and the semi-strict con sen sus trees will be iden ti cal. The ma jor ity rule con sen sus tree
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Fig ure 9.16.  Con sen sus
trees. The sum mary of al -
ter na tive trees a-c into the
strict con sen sus d, the
semistrict con sen sus e, the
ma jor ity rule con sen sus
(>50%) (f), the Ad ams
con sen sus (g) and the
"durchschnitt" con sen sus
(h). Com pare the suc cess
of the con sen sus trees in
find ing the com pro mise
tree for dendrograms a-c!



(Margush & McMorris 1981) tol er ates even more dis crep an cies among the trees. The con di -
tion of the ap pear ance of a con sen sus clus ter is its pres ence in at least p per cent (p>50%) of
the in put trees. Con se quently, the ma jor ity rule con sen sus for the above ex am ple will be com -
pletely bi fur cat ing (Fig. 9.16f): its classes ({BC}, {ABC}, {ABCF}, {DE}, {ABCDEF} and
{G}) are rec og nized in at least two of the three start ing dendrograms. The value of p is se -
lected by the in ves ti ga tor, and for many trees it is use ful to raise the tol er ance level well over
50%.  It is easy to ver ify that for two trees the strict and the ma jor ity rule con sen sus trees are
iden ti cal.  As a fur ther pos si bil ity, the me dian con sen sus tree (Barthélemy & Monjardet 1981,
Barthélemy & McMorris 1986) also re quires at ten tion, Its der i va tion is based on the same
grounds as the me dian con sen sus par ti tion (9.27) pro vided that we find an ap pro pri ate func -
tion for the pairwise com par i son of trees. If this func tion is the par ti tion met ric (Equa tion
9.12), then the 50% ma jor ity rule tree is at the same time a me dian tree (Barthélemy &
McMorris 1986), which is not nec es sar ily bi fur cat ing. If one in sists to find a com pletely di -
chot o mous me dian tree, the sug ges tions by Penny et al. (1982) should be con sid ered to get a
‘me dian bi nary tree‘ (Swofford 1991).

It is an in ter est ing his tor i cal fact that the first prop o si tion for a con sen sus tree dif fers from
all of the above-mentioned, math e mat i cally el e gant pro ce dures. Ad ams (1972) sug gested to
ex am ine how the large groups are sub di vided into smaller and smaller clus ters when we pro -
ceed from the root to wards the ter mi nal branches of the tree. First, we gen er ate the par ti tions
de ter mined by the first di vi sion (i.e., at the root) and find their strict con sen sus par ti tion. For
dendrograms 9.16a-c, these par ti tions are {ABCDE}{FG} and {ABCDEF} {G} twice. From
these, we ob tain the strict con sen sus par ti tion {ABCDE}{F}{G}, so the con sen sus tree starts
with a trifurcation. Af ter wards, the clus ter {ABCDE} is eval u ated in the same way, with a re -
sult shown in Fig. 9.16g. The most com mon crit i cism against the Ad ams tree is that it may de -
pict clus ters that did not ap pear in any of the start ing trees (Fig. 9.17).

There is a method that ap plies ex clu sively to dendrograms, the ‘durchschnitt’
(cross-section) con sen sus (Neumann 1983, Smith & Phipps 1984). The pro ce dure re lies
heavily upon the or der ing of hi er ar chi cal lev els. From the root to wards the leaves, par ti tions
are de fined by ‘cut ting’ the tree, and then these par ti tions are sum ma rized into a con sen sus at
each cut level. The clus ters of this con sen sus par ti tion form the branch ing pat tern of the con -
sen sus tree. The pro ce dure may con tinue this way un til the triv ial par ti tion of ob jects into m
classes is ob tained (Fig. 9.16h). Again, the ac tual hi er ar chi cal lev els do not mat ter, only their
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Fig ure 9.17. A ma jor
‘prob lem’ with the Ad -
ams con sen sus tree (c)
is that some of its clus -
ters may be ab sent from 
all com pet ing trees
(a-b). Nev er the less, this 
tree ex presses faith fully 
the rel a tive neigh bor re -
la tion ships of most ob -
ject pairs 



or der ing is con sid ered. The durschnitt con sen sus can also have clus ters that did not ap pear in
the in put trees at all. 

Finally, I men tion the prun ing and graft ing method pro posed by Finden & Gordon (1985).
Its ma jor dif fer ence from all pre vi ous con sen sus tree gen er a tion meth ods is that some of the
ob jects may not ap pear in the fi nal tree. The method aims to re move out lier or con flict ing
branches in a step wise man ner such that the remanining trun cated tree agrees with all in put
trees. Of course, sev eral such re duced trees may ex ist for a given prob lem, and the one with
the most nu mer ous ob jects (‘larg est com mon pruned tree‘) is to be re tained as the fi nal con -
sen sus. The method is ex tremely use ful if a few ob jects with highly un sta ble po si tions are re -
spon si ble only for the be tween-tree dif fer ences. The prob lem is that we do not know ex act and 
fast al go rithms to iden tify the larg est com mon pruned tree; enu mer a tion of all pos si bil i ties for
large m is not fea si ble for the o ret i cal resons (cf. NP-completeness). 
9.4.2.1. Con sen sus in di ces. When the over all agree ment of many trees is mea sured by a sin gle
num ber, rather than a tree, we use a con sen sus in dex (Rohlf 1982). In deed, these for mu lae ex -
press sim i lar ity be tween 0 and 1 and could have been treated for the case k = 2 in the sub sec -
tion on pairwise dendrogram com par i sons (9.2.3). How ever, these are most ap pro pri ate for
many al ter ative trees. A good sum mary, in ad di tion to Rohlf’s re view cited above, is in
Swofford (1991) while the fol low ing dis cus sion is con fined to a few of them. 

The sim plest of all is the con sen sus fork in dex pro posed by Colless (1980). It mea sures the
de vi a tion of the con sen sus tree from the fully bi nary one. The in dex is the num ber of
non-trivial5 classes di vided by m-2, the max i mum num ber of non-trivial classes. For
dendrogram 9.16d, the in dex amounts to 0.2 (be cause only one class out of the five pos si ble
ones ap pears). Its value is 0.4 for tree 9.16g and 1 for tree 9.16f. The Mickevich-index (1980)
as signs a weight to each con sen sus class, ac cord ing to its size, thus rep re sent ing an ex ten sion
of the Colless-index. If clus ter i has ni ob jects, then its im por tance is Ni = min{ni–1, m–ni}.
The sum of these im por tance val ues di vided by the pos si ble max i mum of the in dex pro vides
the mea sure sought. For the three dendrograms men tioned above, we ob tain the val ues of
0.222, 0.444 and 0.888, re spec tively. Finally, Schuh & Farris (1981) of fer a com pletely dif fer -
ent weight ing sys tem: com pute the num ber of ob ject pairs for each clus ter, that is Ni = ni(ni –
1)/2, and add them (‘lev els sum’). For the ex am ple trees of Fig. 9.16 d, g and f we get 3, 26 and
13. The lev els sum could be di vided by the max i mum to have a unit range, A prob lem with this 
rang ing by the max i mum for all in di ces is that the max i mum de pends greatly on the shape of
the trees (larger for chained dendrograms than for bal anced trees). 

9.4.3 Con sen sus or di na tions

If there are k al ter na tive or di na tions of the same m ob jects, then their av er age6 (or, in a sense,
their con sen sus) or di na tion may also be in ter est ing for the in ves ti ga tor. The for mu la tion of
our task ap pears rel a tively easy be cause it seems suf fi cient to adapt the prin ci ple of me dian
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5 A class is trivial if it contains only one or all objects. 
6 An important field of application of consensus ordination is in morphometric analysis, already mentioned in

Subsection 7.6.2 under the term ‘superposition methods’.  



con sen sus: the or di na tion sought is a point con fig u ra tion whose sum of squared dif fer ences
from all the oth ers is the min i mum (For mula 9.13). The ob jec tive is thus to op ti mize the fit of
or di na tion k+1 to the k al ter na tives, achieved by the gen er al ized Pro crus tes method sug gested
by Gower (1975).  As many other multivariate op ti mi za tion tech niques, this method also re -
quires sev eral it er a tions to find the fi nal so lu tion. An ob vi ous ex cep tion is the case k = 2 be -
cause the con sen sus co or di nates are de rived sim ply by av er ag ing af ter the two or di na tions are
fit ted, and this op er a tion re quires a sin gle com par i son (as de scribed on page 329).

In the first step of gen er al ized Pro crus tes anal y sis, each or di na tion is cen tred and nor mal -
ized to unit sum of squares. With out do ing so the con cept of an av er age or di na tion would not
work. If Xi de notes or di na tion i, and Y re fers to the con sen sus con fig u ra tion we are look ing
for, then  each Xi con fig u ra tion must be ro tated to ob tain its best fit to  Y, pro vid ing the re sult
in Yi:

Y X Hi i i i=   .                                                                                                       (9.29)

In this for mula, i is a scale pa ram e ter and Hi is the ro ta tion ma trix ob tained by min i miz ing
the fol low ing func tion:

RES
i

k

   



1
tr [( ) ( )]Y Y Y Yi i                                                                       (9.30)

(RES de notes the re sid ual sum of squares). The ro ta tions are per formed such that the to tal sum 
of squares of the orig i nal k or di na tions does not change:

SSQ
i i i

i       tr tr tr( ) ( ) ( )X X Y Y X Xi i i i i i2  .                           (9.31)

The con sen sus or di na tion is thus the arith me tic av er age of the re spec tive co or di nates:
Y Y 1 k

i
i                                                                                                   (9.32)

So far so good, but how to fit each or di na tion to the con sen sus when the con sen sus is not yet
known? To get out of the vi cious cir cle, we have to it er ate. First, X2 is fit ted to X1 and then
X3 is fit ted to the av er age of  X2 and X1. We pro ceed in sim i lar way un til or di na tion  Xk is fit -
ted to the av er age of all other or di na tions. This first cy cle yields the start ing es ti mate of the
con sen sus or di na tion. Usually, fur ther cy cles are nec es sary to im prove this con fig u ra tion; the
it er a tions are stopped when the change of RES be tween two sub se quent cy cles be comes neg li -
gi ble. Each step in volves ro ta tions and an op tional, though strongly rec om mended rescaling
of co or di nates. The directionality of the fi nal con sen sus or di na tion is ar bi trary. It is sug gested
there fore to per form a PCA from the fi nal Y, and then fit each start ing or di na tion to this PCA
re sult again.

The to tal sum of squares (SSQ) has two com po nents: the re sid ual sum of squares (RES)
and the con sen sus sum of squares (SSQ–RES). The worse the over all fit of or di na tions, the
higher is the value of RES. A use ful in ter pre ta tional ve hi cle is the per cent age con tri bu tion of
each ob ject and each or di na tion to the value of RES; the per cent ages iden tify out lier ob jects as 
well as or di na tions that dif fer most re mark ably from the av er age con fig u ra tion. 

As an ex am ple, let us see how the ef fect of plot size can be elim i nated from an or di na tion
of veg e ta tion data. The study de sign was al ready men tioned in Sub sec tion 9.4.1, but in this
case we use only six sizes (from 1.5  1.5 m2 to 4 4 m2, with a side length in cre ment of 0.5
m) for the same 80 sam ple sites. The or di na tion method is PCoA. The over all fit of the six
PCoA re sults for the first two di men sions is ob tained by the gen er al ized Pro crus tes method.
Since the scat ter di a gram would be too com pli cated and dif fi cult to view if all the points were
shown, the or di na tion out lines only the po si tions of a given site when quadrat size was
changed. The con sen sus po si tions are not il lus trated ei ther; these are near the cen troid if each
shape. Fig ure 9.18 dem on strates that chang ing the quadrat size did not excert too much in flu -
ence upon the or di na tion as a whole. The arched ar range ment of quad rats along the back -
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ground gra di ent from the open to the closed com mu nity type is es sen tially un af fected by
quadrat size. This is now the right place to ex plain why the small est two sizes (0.5  0.5 and 1 
 1 m2)  were re moved from the anal y sis: they were too small to pro vide suf fi cient in for ma -
tion on the spe cies com po si tion of the site and there fore the in clu sion of their PCoA or di na -
tions com pletely con founded the con sen sus or di na tion.

9.5 Comparison of results of the different type

9.5.1 Nu mer i cal com par i sons 

OUCs of the dif fer ent type can only be com pared nu mer i cally if all of them are brought into
the same math e mat i cal form. This uni ver sal stan dard is a sym met ric ma trix, sum ma riz ing the
re la tion ships of the m ob jects in all pos si ble pairs. Two ma tri ces can then be con trasted by the
cor re la tion co ef fi cient (For mula 9.1), whereas Eu clid ean dis tance and re lated func tions are
use ful only if the val ues of the two ma tri ces are nor mal ized to the same scale. Rank cor re la tion 
is a pos si bil ity if we do not worry about the ac tual dif fer ences be tween the val ues in the ma tri -
ces. An ex am ple for this ap proach was al ready pre sented in Sub sec tion 5.5.1: the cophenetic
cor re la tion mea sures the dis tor tion im plied by the ultrametric tree in com par i son to the orig i -
nal dis sim i lar i ties from which the dendrogram was ob tained. Anal o gously, the cor re la tion be -
tween the dis tances in an ad di tive tree and the start ing dis tances may also be cal cu lated to
mea sure the de vi a tion of within-graph dis tances from the orig i nal dis tances. Since par ti tions
and or di na tions may also be writ ten in form of mm ma tri ces, the cor re la tion for mula ap plies
to a wide va ri ety of com bi na tions of OUC types. 

9.5.2 Graph i cal com par i sons 

When all re sults are ex pressed in ma trix form, the co or di nate sys tem-based ap proach ex em -
pli fied al ready in Sub sec tion 9.2.1 pro vides a straight for ward graph i cal tool. The si mul ta -
neous dis play of dif fer ent re sults ap pears even more fre quently in pub li ca tions. The ba sis is
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Fig ure 9.18. Gen er al -
ized Pro crus tes anal y -
sis. The six or di na -
tions to be com pared
were de rived from
dif fer ent plot sizes for 
the same set of 80
sites. Each ir reg u lar
shape rep re sents the
out line of po si tions
for the same site. The
in di vid ual points are
not shown, so that the 
con sen sus or di na tion
is only im plic itly
pres ent in the di a -
gram. 



usu ally a two-dimensional or di na tion upon which the other re sult is su per im posed (as done al -
ready in Fig ures 7.2 and 8.10b). The pro jec tion of one OUC over the other elim i nates potental
dis ad van tages of ei ther OUC and em pha sizes their agree ments, as il lus trated by the fol low ing
ex am ples. Graph i cal eval u a tion and the su per po si tion of re sults are warmly rec om mended in
all fields of multivariate data ex plo ra tion.

First, the ‘ma trix plot’ is used to de pict the re la tion ships be tween a dis tance ma trix and a
dendrogram de rived from it. Let us choose the dendrogram in Fig. 8.8c, rep re sent ing the
UPGMA clus ter ing of points of Fig ure 4.3c. The cophenetic cor re la tion (0.662) was al ready
cal cu lated in Sub sec tion 5.5.1. Now, we ex am ine graph i cally what is be hind this cor re la tion.
In Fig. 9.19a, the hor i zon tal axis mea sures the lev els in the dendrogram, whereas the dis tances 
are mea sured on the ver ti cal axis. Since the max i mum num ber of dif fer ent lev els in a
dendrogram is m–1, the points of the scat ter gram are ar ranged in ‘col umns’. The tri an gu lar
out line of the point scat ter il lus trates pretty well that each hierarchial level rep re sents a wide
range of orig i nal dis tances, and this range may be es pe cially wide for the last fu sions even if
the cophenetic cor re la tion is high.

As a con fir ma tion of non-hierachical clas si fi ca tions, the groups may be por trayed by out -
lines drawn around the mem ber ob jects in an or di na tion plane (usu ally in di men sions 1 and
2). We can do it by eye, but a more el e gant so lu tion is to find the min i mum con vex hull (or
‘clas si fi ca tion poly gon’). This shape in cludes all points in a group with out ‘hol lows’ (i.e., the
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Figure 9.19. Graph i cal com par i son (a: dendrogram ver sus dis tance ma trix) and si mul ta neous il lus tra -
tion (b: or di na tion and a par ti tion with con vex hulls, c: or di na tion and a clas si fi ca tion with prob a bil ity 
el lip ses, d: or di na tion and min i mum span ning tree) of dif fer ent types of re sults
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in te rior an gles do not ex ceed 180o) such that its area is the min i mum. The size of these poly -
gons and the lack of over laps in be tween of fer a vi sual ba sis for eval u at ing the good ness of a
clas si fi ca tion. If the over laps are ex ten sive, the par ti tion is in doubt. As an ex am ple, we ex am -
ine the three-species clas si fi ca tion of the Iris data drawn on a PCA or di na tion of the 150 in di -
vid u als along the first two axes (Fig ure 9.19b). The di a gram is no more than a mere
con fir ma tion of the well-established re sult that one spe cies sep a rates well whereas the other
two are not dis tinct on the ba sis of the four flower char ac ters in cluded. 

An other pos si bil ity of con trast ing par ti tions and two-dimensional or di na tions is the dis -
play of ‘el lip ses of equal con cen tra tion (Mardia et al. 1979, Lagonegro & Feoli 1985).The el -
lipse cor re sponds to an area in the or di na tion space which con tains 100(1–) per cent of the
mem bers of the given group ( is the prob a bil ity level cho sen). This is only true, how ever, if
the orig i nal data fol low multivariate nor mal ity and sam pling is ran dom. These cri te ria are
rarely met in bi o log i cal in ves ti ga tions. Nev er the less, it is dem on stra tive to dis play the prob a -
bil ity el lip ses of the three Iris spe cies at the prob a bil ity level of 95% (Fig. 9.19c). In this di a -
gram, the rel a tive over lap be tween el lip ses is sim i lar to the clas si fi ca tion poly gons.

As men tioned al ready in Sub sec tion 5.4.3, a good vi sual test of a two-dimensional or di na -
tion is of fered by min i mum span ning trees. The close ness of two ob jects in the or di na tion
plane may be mis lead ing, be cause the two di men sions por trayed do not rep re sent faith fully
enough the interpoint dis tances. If the edges (links) of the graph cross one an other, or there is
a long path be tween two ob jects that are not far apart in the di a gram, then fur ther di men sions
should be con sid ered in the or di na tion dis play. How ever, a well-stretched graph with out such
phe nom ena is an in di ca tor that the two di men sions are largely suf fi cient to rep re sent the
interpoint dis tances. This is what we see in the PCoA or di na tion of Eu ro pean cit ies (Fig.
7.18): the su per im posed min i mum span ning tree (Fig. 9.19d) con firms that the 84% share
from the to tal vari ance is high enough to ac cept the first two di men sions.

9.6 Literature overview

The lit er a ture of the com par i son meth od ol ogy is more ex ten sive than ex pected and the re cent
de vel op ments in the area make the sub ject al most im pen e tra ble for an av er age, yet sta tis ti -
cally-minded bi ol o gist. This is true of the ory only, be cause the ap pli ca tions to bi o log i cal prob -
lems are un bal anced and of ten very lim ited. Data ex plo ra tion in com mu nity ecol ogy, for
ex am ple, does not ex haust the pos si bil i ties in com par i son to tax on omy and evo lu tion ary bi ol -
ogy. Noted ex cep tions are the books by Digby & Kemp ton (1987) and Orlóci (1978). The first
book dis cusses Pro crus tes meth ods in de tail, whereas the sec ond one de votes much space to
the com par i son of par ti tions via in for ma tion the o ret i cal sta tis tics. The im por tance of com par i -
sons is clearly rec og nized by most tax o nomic and cladstic mono graphs, such as Sneath &
Sokal (1973). In par tic u lar, the re view by Rohlf & Sokal (1981a) on the dif fer ent types and log i -
cal path ways of nu mer i cal tax o nomic comparsions is rec om mended. By look ing at the most re -
cent lit er a ture, we find that the search for a con sen sus cladogram (e.g., Swofford 1991) is the
most com mon pre oc cu pa tion of evo lu tion ary bi ol o gists. We al ready know why: the num ber of
equally parsimonous op ti mal cladograms can be ex ceed ingly high for large num bers of taxa. 

The need of com par i son of ten arises in a meth od olog i cal con text: of the sev eral al ter na tive
meth ods avail able one wishes to se lect the one best sat is fy ing cer tain pre de fined ba sic as -
sump tions. This pos si bil ity was not yet men tioned, al though there are sev eral ex am ples for this 
ap proach, even in ecol ogy (Fasham 1977, Gauch et al. 1977, 1981 etc.). Such stud ies raise
ques tions like: which or di na tion pro ce dure is less prone to the arch ef fect? which method is
best suited to re cover an as sumed (or sim u lated) back ground gra di ent? and so on.  Here, the
ob jec tive is to ex am ine how cer tain ex ter nal as sump tions are met be the method, rather than to 
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com pare al ter na tive re sults for the same data. The com par a tive eval u a tion of the perfomrance
of meth ods is a dif fer ent mat ter.

Al though some im por tant sources of informatioin were al ready cited in the pres ent chap ter,
it is worth men tion ing some jour nals again whose knowl edge is im per a tive if one wishes to be
up to date in a given dis ci pline. Sev eral pa pers of the Jour nal of Clas si fi ca tion, es pe cially the
spe cial is sue of 3(2) are de voted to the prob lem of com par ing clas si fi ca tions, and un der stand -
ing of these re views re quires ad vanced knowl edge of dis crete math e mat ics. Per haps, Rohlf
(1974, 1982) and Day (1988) are more suit able as a start ing ref er ence. The evo lu tion ary im pli -
ca tions of tree com par i sons are dis cussed by Penny et al. (1982, 1991) and, more re cently, by
Page and Holmes (1998), and al most all is sues of Sys tem atic Bi ol ogy of fer use ful read ing for
the in ter ested bi ol o gist. For or di na tions, our choice is more lim ited.

Re gard ing the sig nif i cance of com par i sons, the the ory and ap pli ca tions of the Man tel test
are pi o neer ing and still dom i nant. Manly (1991) de votes a full chap ter to this sub ject, with am -
ple ex am ples from dif fer ent bi o log i cal dis ci plines. Typ i cal fields of ap pli ca tion of the Man tel test 
are the com par i son of phenotypic and genotypic in for ma tion (Douglas & Endler 1982), com -
par i son of ge netic and anthropometric dis tances (Dietz 1983, whose study re lies also on rank
cor re la tions), eval u a tion of point pat terns (Harvey et al. 1988) and the elu ci da tion of small
scale re la tion ships of spe cies to the en vi ron ment (Burgman 1987). On the sig nif i cance of
dendrogram and cladogram com par i sons, the best read ing is Lapointe & Legendre
(1990,1991, 1992, but see com ments in Podani 2000). 

9.6.1 Com puter pro grams

Most com mer cially avail able pack ages quite sim ply ig nore the com par a tive eval u a tion of
re sults. There is no ex cuse for that even though in some cases very spe cial meth ods are re -
quired. Ta ble 9.2 pro vides a brief list of some soft ware that in clude rou tines on pairwise com -
par i sons, con sen sus, and sig nif i cance tests.

9.7 Imaginary dialogue

Q: First of all, let me as sure you that – af ter work ing through this chap ter – most of my scep ti -
cism is over. When read ing the start ing pages I did not un der stand why is this topic so im por -
tant for you. Later, at least some of the ex am ples were con vinc ing enough for me to see that
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Ta ble 9.2. Com par i son of re sults in dif fer ent pro gram pack ages.

NT-SYS SYN-TAX PHYLIP PAUP

Matrix comparisons ++ ++
Partitions ++
Dendrograms, trees ++ ++
Procrustes methods ++
Consensus partitions ++
Consensus trees ++ ++ ++ ++
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Superposition of different reults ++ ++



multivariate data ex plo ra tion, in most of the cases, does not con clude by gen er at ing the re -
sults, the OUCs, no mat ter how at trac tive they ap pear for the su per fi cial in ves ti ga tor. 
A: Thanks for the rec og ni tion! As I men tioned in the lit er a ture re view, the im por tance of the
topic is largely over looked in sev eral ar eas. I tried to re solve this by a re view (Podani 1989d)
at least in the field of veg e ta tion sci ence, but I have col lected no more than 8-10 ref er ences
since then! Maybe, my ef forts will re ceive more at ten tion later, but it is also pos si ble than sci -
en tific fash ions will di vert peo ple from this topic fur ther apart...
Q: If I un der stood well, then the Pro crus tes method is suit able to or di na tions of equal
dimensionality only. What shall I do if I am ex cited to know how an or di na tion is changed
along with in creas ing dimensionality, i.e., when more and more axes are con sid ered? It is
also rea son able to ask how many di men sions of a PCoA or di na tion fit best to a
two-dimensional nonmetric or di na tion. 
A: Surely, the Pro crus tes method does not work in these cases. Do not worry, how ever, be -
cause by the good old ma trix com par i sons you will be able to find the an swer. The mm dis -
tance ma tri ces rep re sent ing the or di na tions may be cal cu lated based on as many di men sions
as you wish.
Q: I would not be sur prised to hear about some spa tial se ries anal y sis as so ci ated with these
com par i sons... 
A: There was al ready one ex am ple, do not you re mem ber? In find ing the ma jor ity rule con -
sen sus, the cri te rion may be changed from 50 to 100%, thus gen er at ing a se ries of con sen sus
clas si fi ca tions (or other types of re sults). There is an other method that I did not men tion yet.
Stinebrickner (1984) pro posed a fam ily of con sen sus meth ods char ac ter ized by a mod i fi able s
pa ram e ter. If s = 1, then we have the strict con sen sus, while sys tem atic de creases of this value
pro duce more and more clus ters in the con sen sus tree. Of the dendrograms in Fig. 9.16, the
Ad ams tree (g) is iden ti cal to the Stinebrickner con sen sus for s = 0.5.
Q: If there is a pro posal to uti lize the ultrametic prop erty of the dendrograms in their com par -
i son, then is there any pos si bil ity to rely upon the four-point met ric in the comparsion of ad di -
tive trees? 
A: Yes, the ‘quar tet met ric’ (see Steel & Penny 1993, and ref er ences therein) im plies this for
unrooted trees. For each pos si ble quar tet of ob jects  (there are “ m choose k” of them), we ex -
am ine the two trees be ing com pared. The num ber of quar tets for which the two trees have dif -
fer ent to pol ogy pro vides a met ric dis tance of trees. 
Q: It seems fairly ob vi ous from what you are say ing that con sen sus trees are of lit tle in ter est
out side cladistics. But why?
A: Con sen sus trees are in ev i ta ble if the com plete hi er ar chy is of pri mary con cern. Since the
evo lu tion ary path ways of a given group of or gan isms  are in ter est ing to the fin est de tail,
cladograms oc cur most com monly in con sen sus tree-seeking. In a veg e ta tion study, how ever,
even though full dendrograms are ob tained in the first phase of the study, the branch ing pat -
tern of the tree near the leaves is in fact ir rel e vant.  The par ti tions that can be de rived from the
dendrograms at par tic u lar high hi er ar chi cal lev els are more in ter est ing, as il lus trated in Fig ure
9.15. This is so in may other fields of sci ence where the con struc tion of trees is only a first step
in a long meth od olog i cal se quence.
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Q: Is not it po ten tially dan ger ous that there may be more con sen sus meth ods than the num ber
of trees we are an a lyz ing? May not it be true that the pro lif er a tion of meth ods will
overcomplicate our job, lead ing to an over pro duc tion of re sults?

A: This is a proper note, not en tirely with out irony! Yes, there are many con ceiv able con sen -
sus re sults, and I can tell you that I did not even men tion the ma jor ity of con sen sus meth ods in
this book. There have been long-standing de bates over the util ity of the con sen sus ap proach in 
bi ol ogy. I think the prob lem can not be cir cum vented in data ex plo ra tion, be cause the num ber
of meth ods them selves is still steadily in creas ing. Of course, it is true that a con sen sus tree
could be more ap pro pri ate if based on more prop er ties, rather than on a sin gle one (let me re -
mind you of my views on dendrogram com par i sons!). Such a ‘multivariate con sen sus’ may be 
of more gen eral va lid ity than the con sen sus re sults we al ready know. 

Q: I am not sure that the con sen sus should al ways be searched for in the man ner you de -
scribed. For ex am ple, if the al ter na tive trees are based on eval u a tions of sep a rate sub sets of
data for the same taxa, then why do not we sum ma rize this in for ma tion at the level of data,
thus sav ing hours of work with the con sen sus gen er a tor rou tine?

A: You should con sult some is sues of TREE (Trends in Ecol ogy & Evo lu tion) in the li brary
near est to you. There was a de bate quite re cently in this jour nal about the pos si bil i ties of com -
bin ing in for ma tion in phylo gen etic re con struc tion (vol. 1996, e.g., Ballard 1996). One ap -
proach sug gests what you have just said: syn the size all pos si ble data first and use this
com bined set for the gen er a tion of the fi nal tree. Pro po nents of the other ap proach main tain
that it is al ways in ter est ing to see the al ter na tive evo lu tion ary hy poth e ses gen er ated by dif fer -
ent sets of data, and then to find a com pro mise among them. Sta tis ti cal tests may be used to
eval u ate the null hy poth e sis that the trees rep re sent the same evo lu tion ary re la tion ships, i.e.,
their dif fer ences are within rea son able lim its. If this is true, then a piori pool ing of data was
right. If the null hy poth e sis is re jected, then the ‘many trees’ ap proach is the only one ca pa ble
of re veal ing the rea sons be hind the sig nif i cant dif fer ences among trees. 

Q: If pairwise dis sim i lar i ties can be tested for sig nif i cance, then we should also be able to
eval u ate a con sen sus re sult along sim i lar lines, I think. 

A: A good point again! I can give you an ex am ple which an swers your ques tion at least par -
tially.  Felsenstein (1985) pro posed us ing boot strap trees in cladistics, each tree be ing based
on a ran dom choice of vari ables. When a suf fi cient num ber of trees are ob tained, a ma jor ity
rule con sen sus tree is gen er ated. In this tree, each group is ex am ined to see how many per cent
of the boot strap trees con tained that group. Some clades may have ap peared in all boot strap
cladograms, these are the most ‘sig nif i cant’ groups in cladistic anal y sis. Other groups may
have lower per cent ages, but never smaller than 50%. The lower the per cent age, the less sup -
ported is the given subtree by the data. The per cent ages are in di cated by small num bers on
each branch of the con sen sus tree. Of the many ex am ples for this ap proach in mo lec u lar sys -
tem at ics, I have cho sen Krajewski & Dickerman (1990) and Cracraft & Helm-Bychowski
(1991) ran domly. The re cent is sues of the jour nal, Mo lec u lar Phylogenetics and Evo lu tion
pro vide a large num ber of case stud ies in which boot strap ping plays a cen tral role. How ever,
there is no unan i mous en thu si asm about boot strap ping and sub se quent con sen sus gen er a tion
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among phylogeneticists. A com mon crit i cism is that es ti mates re gard ing the sig nif i cance of
clades are too con ser va tive (Hillis & Bull 1993).  
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