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Comparative evaluation of results

(The analyses must go on!)

Classifications, ordinations and other types of results do not necessarily represent the final
stage of our endeavour into the realm of multivariate data exploration. There are several argu-
ments supporting the view that the computations should go on in most cases. For example, it is
mostly true, except for trivial cases, that different procedures applied to the same set of data
produce more or less diverging results! It was demonstrated in this book most markedly for hi-
erarchical clustering. Although the methods themselves are considered ‘objective’ tools, there
are several points during data analysis where the surveyors’ decisions are inevitably subjec-
tive. To mention a few: the definition of sampling characteristics (e.g., quadrat size), the selec-
tion of variables, data types and transformation methods, the choice of the resemblance
function, the ordination or clustering algorithm are all up to the investigator, — and the list
could have been continued. To make sure that these decisions do not influence our conclu-
sions significantly, it is always advisable to examine their relative impact upon the results.
This is the only possibility to remove the methodological ‘artefacts’ from the analysis, thus re-
vealing information that truly reflects the properties of study objects themselves. The compar-
ison of the results of alternative analyses is the most useful in this approach. In certain
situations, however, comparisons do not relate to methodological choices. A good example is
parsimony analysis in cladistics which may produce hundreds of equally optimal trees whose
synthesis into a new tree leads us to the final conclusions. This chapter is devoted entirely to
various approaches to the comparison and synthesis of alternative results.

Units of comparison

Each alternative result may be considered as an object, in the same way as taxa, sample plots
and other individuals were treated in the first part of the study. On the analogue of OTUs of
numerical taxonomy and OGUs of geography, dendrograms, ordinations, distance matrices
and other types of results may be collectively termed as operational units of comparison
(OUC, Podani 1989d). Whereas two dendrograms may be contrasted according to the usual
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Euclidean distance function in the same way as two OTUs, the characteristics on which the
comparison is based are very different from the features of ‘natural’ objects. It is clear for all
of us that the comparative evaluation of OUCs requires special means that adequately reflect
their mathematical properties. When the distance is properly defined, then most analytical
tools already known from the previous chapters will be helpful, although in certain situations
the old and good procedures of conventional biostatistics are called for — in a modified form.

9.1 Main choices

Comparisons may follow very diverse logical pathways, therefore this topic is extremely intri-
cate and complicated. For didactic reasons and better orientation in the subject, the main pos-
sibilities are categorized. We should note first that the investigator is faced with several
choices between two alternatives when making a comparison, even though he or she is not al-
ways aware of any such decision (Podani 1989d). Many choices fit a dichotomous decision
tree (Figure 9.1) whereas others — the latter three in the list that follows — have a more general
validity, being equally important on several branches of the tree.

9.1.1. Type of results: identical vs different

Comparisons are most commonly made between results of the same type, such as between two
partitions or two ordinations. This possibility was not explored yet in this book. However, we
have seen already some examples of an approach in which the units compared are of different
type. The comparison of a dendrogram with the matrix from which it was derived (cophenetic
correlation, Subsection 5.5.1) implies a quantitative measurement of the agreement between
two different kinds of mathematical objects. The simultaneous graphical display of two re-
sults by the superposition of one result upon the other is an example for a visual comparison,
as illustrated by positioning a plexus graph over an ordination diagram (Figure 8.10b). Further
examples for inter-type comparison will be shown in Subsection 9.5.2.

9.1.2. Similarity vs consensus

The similarity or distance between a pair of OUCs may be expressed numerically, and the
comparison of k£ > 2 OUCs in all possible pairs (‘multiple comparisons’) provides a resem-
blance matrix which may be used in turn for the classification or ordination of OUCs (‘meta
analysis’). The very same k results may also be synthesized into a k1™ result which may
show both agreements and disagreements of the original results. This synthesis is the consen-
sus object often used to represent the entire set of competing OUCs in the biological interpre-
tation of results.

9.1.3. Hypothesis testing vs exploratory analysis

The investigator may want to see whether the similarity between two OUCs is significant or
not in the traditional sense. That is, the data exploration may end up with a statistical approach
which was almost completely forgotten in the first phase of the study! In order to be able to do
this, however, two important conditions must be satisfied. First of all, the two OUCs to be
compared must be independently derived which means, for example, that they cannot come
from the same set of data. Thus, the significance of dendrogram similarity may only be tested
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I I
Different type Same type

Numerical Graphical Similarity/distance Consensus

Exploratory analysis Hypothesis testing

I ! | IJ—I

Overall comparison ~ Comparison to a reference Planned Unplanned

Figure 9.1. Tree diagram illustrating the main choices to be made when comparing results of
multivariate analysis.

if the first is based on variable domain A and the other on variable domain B, the domains hav-
ing no variables in common. The question whether the two dendrograms are significantly sim-
ilar implies testing the proposition that the two groups of variables lead to similar
classifications. The other condition of any significance test is the availability of the reference
distribution of the statistic that measures similarity. Since the underlying distributions are not
known, with a few exceptions, the only resolution is to generate them by Monte Carlo simula-
tion. The essence of this approach is that hundreds or even thousands of randomly created
pairs of OUCs are compared by the given similarity measure, and the frequency histogram of
categorized similarity values is drawn, allowing to examine the position of the actual similar-
ity value.

If the independence condition for significance tests is violated, then some exploratory
function of the statistics still remains. For £ > 2, we can proceed as described below in subsec-
tion 9.1.5. However, in studies restricted to the comparison of two OUCs the single similarity
value is practically uninformative by itself. In such a case, we can still use the reference distri-
bution to assess the position of the single value relative to the mean, etc., but we should never
make statements as to the ‘significance’ of such results.

9.1.4 Planned vs unplanned comparisons

If significance testing is valid and there are several pairs of OUCs, then we must give careful
considerations to the following problem. We are faced with a situation analogous to determin-
ing the least significant difference (LSD) after the ANOVA of several samples (Sokal & Rohlf

k
1981a): the selection of significant similarities from the matrix of all (2jvalues accumulates

Type I errors and therefore more pairs are deemed significantly similar than actually are at the
chosen probability level (usually p = 0.05). Whenever we decide before the calculations that
some particular pairs are of interest only ( ‘planned comparisons ‘), then the above problem is
avoided and the simulated distribution applies to the test. If, on the other hand, there are no a
priori selected pairs of OUCs (‘unplanned comparisons’) and all pairs are to be tested, then
the test should be made more conservative. The Monte Carlo simulation of the minima for
k(k—1) pairwise comparisons provides a solution for this problem (see Subsection 9.3.6).
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9.1.5. Overall comparisons vs comparisons to a reference basis

We do overall comparisons when none of the OUCs is favored for some reason, so that com-
parisons in all possible pairs are plausible. The relative differences between the similarity val-
ues will be most informative in the meta-analysis that follows. No such meta analysis is
required, however, if one of the OUCs is considered as a reference basis to which all the others
may be compared. For example, an ordination based on all the variables is the reference and
we may wish to examine how the stepwise omission of least important variables will modify
similarity to this reference ordination. The reference now serves as the ‘control’ object in such
comparisons.

9.1.6. Congruence vs algorithmic effects

Rohlf & Sokal (1981b) and Gower (1983) called our attention to this distinction, not shown in
the decision tree of Fig. 9.1 because it appears logically in all comparisons. This is essentially
a distinction between theoretical/biological reasons and technical/methodological aspects.
We can say that if the difference between alternative results may be explained by biological
causes, then we do analysis of congruence (e.g., comparison of classifications based on data
from the adult and larval stages to evaluate taxonomic congruence). Such problems are better
distingushed from situations when the differences among results are explained by mere algo-
rithmic modifications and other technicalities.

9.1.7. Elementary vs complex comparisons

In elementary comparisons, the differences between the alternative OUCs are caused by a sin-
gle factor. In a study of the effect of classificatory strategies upon the dendrograms, the other
‘parameters’ of the analysis (data type, resemblance function, etc.) must be kept constant. If
we do not care about this, then the change of two or more factors will have a confounding ef-
fect upon the results, and our conclusions may be misleading (cf. Kenkel & Orloci 1986).
Such confounding effects are disregarded more commonly in the published literature than we
would think! If two or more factors are evaluated systematically, in all possible combinations,
then their relative importance may be revealed by complex comparisons (Podani 1989d).

9.1.8. Uni- vs multivariate evaluation

Any comparison is univariate when a single property of the OUCs is considered (e.g., con-
trasting dendrograms with one another based on path differences only, see Subsection 9.2.3).
Quite surprisingly, most of the published comparisons are of this type, even though all the pre-
vious steps of the analysis are essentially multivariate in nature! Logic dictates that the full
chain of computations should be multivariate, wherever possible. Podani & Dickinson (1984)
argued that, in case of dendrograms at least, the comparisons may be based simultaneously on
several properties of results, so that the entire study may be multivariate. This is also possible
for other, relatively complex objects such as cladograms, additive trees and minimum span-
ning trees.
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9.2 Pairwise comparison of results

Most of the relevant studies incorporate pairwise comparisons, which may be of central im-
portance even in consensus generation. Therefore, the methodological part begins with this
subject although the decision between pairwise comparison and consensus is not on the high-
est level of the hierarchy of Figure 9.1. The methods suitable for comparisons are discussed
separately for each type of result. First, procedures for the comparison of resemblance matri-
ces are introduced because the evaluation of other types of results may often be traced back to
matrix comparisons.

9.2.1 Matrix comparisons

Numerical methods. Two symmetric resemblance (distance, similarity, etc.) matrices, de-
noted here by D and E, are prepared for numerical comparison by unfolding each of their up-
per semimatrices into a column vector. Then, we can make a choice from the huge arsenal of
resemblance functions discussed in Chapter 3. Most often, the correlation coefficient (For-

mula 3.70) is adapted, best known under the term matrix correlation (Sneath & Sokal 1973:
280):

D, Z (d,~d) (e, —e)

¥DE = i=1 J=itl o5 - (9' 1)

m=1 m m=1

|2 2@ 2 i(eg—z)z}

=1 j=i+1 =1 j=i+l

In this, d and e are mean resemblance values for D and E, respectively. The values in the diag-
onal are excluded from the averaging and from the comparison. Ifthe two matrices imply sim-
ilar tendencies for the resemblance/distance relationships of objects, irrespective of the
absolute magnitude of values, then their matrix correlation will be close to 1. In general, rpg
falls into the interval [—1, 1], as usual for correlation measures. It must be pointed out that the
application of correlation in this case is exploratory, rather than rigorously statistical, because
the values within each matrix are not independent of one another. Thus, the ‘significance’ of
rpg cannot be tested in the usual manner (see Subsection 9.3.1, for more). The Euclideandis-
tance between D and E may also be calculated according to:

wl /2
do =( > (dl.j—el.j)zJ . 9.2)

=1 j=i+l

Other formulations also appear in the literature, but these two functions are the most common
in practice. Matrix correlation is most informative together with graphical comparisons (see
below) and when the two matrices are not commensurable (one is distance and the other is dis-
similarity, for example). For meta-analysis, all pairs of OUCs are compared by the comple-
ment of correlation, as illustrated in the following example. Euclidean distance is meaningful
only if the two resemblance matrices have identical measurement scales.
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The dissimilarities among the objects of Table A1 are calculated first, based on eight co-
efficients. The resulting matrices are compared in all possible pairs using the complement of
Formula 9.1. The advantage of using correlation in this case is that the eight measures express
dissimilarity on different scales. The matrix of matrices is then evaluated by principal coordi-
nates analysis (Figure 9.2). The first two axes account for 84% of the distance relations,
which is a relatively high percentage. The diagram illustrates perceptively the relationships of
the selected resemblance measures in this study. The five-member group on the left side com-
prises measures of very similar behavior; and the Euclidean distance and the Manhattan met-
ric also form a small group. The latter is perhaps surprising because Euclidean distance
emphasizes squared differences, rather than absolute deviations as in the Manhattan metric.
The Canberra metric has an odd performance, owing to the separate standardization for each
pair of variables. Similar results may be obtained easily for other data sets (as in Podani 1994:
191), showing the fair generality of the present conclusions.

Graphical procedure. In an orthogonal coordinate system, each point represents object pair jk
with coordinate djk on the horizintal axis and ejk on the vertical axis. The scatter diagram thus
obtained (matrix plot, Rohlf 1993a) is interpreted similarly to the Shepard-diagram (Subsec-
tion 7.4.2). The better the fit of points to an imaginary line in the plot, the higher is the similar-
ity (linear correlation) of the two matrices being compared.

The graphical comparison of matrices is illustrated for two pairs of matrices taken from
the example on the previous page: 1-BC vs 1-RUZ (r = 0.994) and CM vs CH (r = 0.522).
The scattergrams are shown in Figure 9.3. For the first pair, the relationship is almost linear,
whereas for the second pair the similarity is much weaker. Note, for example, that the object
pair with the smallest chord distance is very distant if compared according to the Canbermra
metric.

9.2.2 Comparison of partitions

Some methods use the strategy of matrix correlation, while others start from cross-partitions.
Further, more specialized techniques evaluate the possibilities of transforming one partition
into the other in order to derive their similarity.
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CM

Figure 9.3. Graphical comparison of matrices. a: 1-Bray-Curtis vs 1-Ruzicka, b: Canberra metric
(CM) vs chord distance (CH), each calculated for the objects of Table Al.

Matrix comparisons. Any partition P can be described in terms of an mm symmetric inci-
dence matrix, denoted here by Cp. In this matrix, cgh = 1 if objects g and / belong to the same
class in P, otherwise cg, = 0. Then, the similarity (or dissimilarity) of partitions P and Q is ex-
pressed by the matrix correlation between the respective incidence matrices Cp and Cq. The
similarity of these matrices can also be calculated by practically any of the presence/absence
coefficients discussed in Section 3.2. Using the notations of the 2 x2 contingency table, a is the
number of object pairs that appear in the same cluster in both partitions compared, b is the
number of object pairs appearing together only in the first partition, and so on. The formulae
are not repeated here, only a brief list is provided to show that their names may differ from
those known from the literature of dissimilarity functions:

- simple matching coefficient (Formula 3.6, = “Rand” index, Rand 1971),

- Euclidean distance (Formula 3.7, = “PAIRBONDS”, Arabie & Boorman 1973),

- Jaccard index (Formula 3.24, Downton & Brennan 1980),

- Sorensen index (Formula 3.25, = “percent mutual matches”, Arabie & Boorman 1973) and
- Ochiai index (Formula 3.26, Fowlkes & Mallows 1980).

All these measures but Euclidean distance are expressed usually in form of their comple-
ments. Thus, complete agreement between partitions is indicated by 0 in every case. However,
it is not true that maximum possible disagreement between P and Q yields a dissimilarity of 1,
because the partitions are constrained to agree in some object pairs. The value of a cannot be
zero because we cannot generate two partitions of m objects (except for the trivial cases) such
that all object pairs occurring in the same group in P are in different groups in Q. In order to be
able to compare dissimilarities coming from different circumstances, standardization is nec-
essary. Usually, standardization is based on the expectation for randomly generated partitions
and the potential maximum, according to the formula:

Actual value - Expected value

- - ) (9.3)
Possible maximum - Expected value
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(see Hubert & Arabie 1985). Those authors pointed out that determining the maximum is a
difficult problem of combinatorial optimization. Podani (1986) proposed heuristic searching
methods to approximate the maxima. A partial and usually satisfactory solution is the compar-
ison of actual values with the expectations and significant values, at a given probability level,
obtained from simulations.

Cross partitions. The cross partitions well-known from block clustering are interpreted now
as contingency tables in which the rows represent the classes in P, the rows correspond to the
classes in Q. The size of the table is sx¢, with s and ¢ as the number of clusters in P and Q, re-
spectively. The value of cell jj in this table is the number of objects that belong to class i in P,
and to class j in Q. For example, for the two partitions of 10 objects

1:{1,2,3,4,5} {6,7,8,9,10 }
2:{1,2,3,6,7} {4,5,8,9,10}
the cross-partition table will be
Partition 2
Class 1: Class 2:
Class 1: 3 2
Partition 1

Class2: 2 3

which corresponds to the following subsets:
{1,2,3} {45}

{6,7} {8,9,10}
In general, the contingency table takes the following form:

Q
q1 Ul qt
Pl
P
Di nij ni,
Ps
nj n.=m

The marginal totals are cluster sizes in P and Q, m is the grand total (the number of objects
classified). The table may be evaluated by the well-known Xz statistic (Formula 3.36) whichis
rewritten using the above notations as,

oy 3y o mr 9.4)

=1 n;n; / m

Zero value results of all classes in P are dispersed equally among the groups of Q, whereas the
maximum occurs if P = Q. This maximum value, m x min [ (s—1), (~1)], can be used as anor-
malizing constant in the same way as in the Cramér-index (3.37).
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The Goodman - Kruskal (1954) lambda (3.38-3.39) is also applicable to comparing parti-
tions, with the following interpretation. Suppose that first we wish to make a guess about the
cluster membership of an object in partition Q without any information on its position in P.
Clearly, the best trial is the largest group in Q, so we find max; [ n; ] because this will mini-
mize the number of bad guesses. However, if we do know that the object is classified into
group / in P, then only the ith row of the cross-classification table should be examined and the
highest value of this row, max; [ nj ], is to be found. Then, based on our knowledge of P, the
mean decrease of our uncertainty regarding the group membership in Q becomes:

ZS: max[n;] —max[n ]
J

LAS,, == : 9.5
re m—max[n ] ©:3)
J

It is an asymmeric measure of predictability or predictive power. Its value is zero if P is com-
pletely uninformative on Q and 1 if the two partitions are identical. This coefficient is useful
when comparisons are made with a reference partition (recall Subsection 9.1.5). The symmet-
ric measure of mutual predictability, the Goodman-Kruskal’s lambda itself is calculated ac-
cording to:
s t
2. max [n,]+ D, max[n,]—max[n,] - max(n, ]

Apy == = . 9.6
" 2m —max[n,] - max[n,] 00
J i

Its values range from O to 1. The complement of (9.6) is a dissimilarity between P and Q.

It is to be noted that there is a formal relationship between the cross partition-based and
matrix-based comparisons: one may be expressed in terms of the other. For example, the
value of a in matrix comparisons may be written using the notation of cross-partitions as

22 n-m]/2

Transformation metrics. The procedures most specific to partitions examine the number of el-
ementary steps necessary to convert partition P into Q. The transformation metric proposed
by Day (1981, MINDMT, “min. divisions, mergences and transfers”) is the simplest of all:
this is the minimum number of objects that must be reassigned to a different group in order to
obtain partition Q. If s = ¢, then the cross-partition table may be transformed into a matrix Z
such that the sum of the diagonal values is maximum and therefore the number of objects to be
regrouped, the sum of off-diagonal values, is minimized:

MINDMT,, =m—tr (Z) 9.7)

When s # t,then the above formula also applies provided that empty (dummy) classes are
added to the partition with the fewer number of groups. The maximum of Formula 9.7 also de-
serves our attention, because it is useful to derive a normalized version of the coefficient:

m—tr (Z)

MISCpy = ————?—
"0 max [MINDMT]

(9.8)
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(“misclassification” index). Its lower bound is 0 (full agreement) while the upper bound is 1
(when the maximum number of relocations are needed to convert P into Q). The maximum oc-
curs if the values of the cross classification table are the most uniform. Day (1981) has pro-
posed many other formulations, such as the sigma metric, which combines some of the indices
already described:

Gpp=2a+btc-2 2242 z,. (9.9)

i=1 i=1

This is also obtained by maximizing tr {Z}. The solution is not necessarily unique, however,
because the same sum of squares may result for the diagonal values from different rearrange-
ments within the cross-classification matrix (the associated @, b and ¢ values ahve some free-
dom to change).

To demonstrate the above approaches, let us perform the following study. First, convert
the data in Table A4 into presence/absence form and rank the 30 species according to criterion
5.8 (see Subsection 8.1.1). Then, the global optimization partitioning strategy (Subsection
4.1.2) and the simple matching coefficient (Formula 3.6) are used to classify the 20 objects
into two clusters based on all species and on consecutively reduced species subsets. The refer-
ence basis is obviously the classification based on the total set of species. The dissimilarity of
the other classifications to this reference may be illustrated by a line diagram (Fig. 9.4). This
allows demonstrating the relationship between a classification and the number of variables
considered. Many coeffcients of partition agreement will also be comparable (here I consider
only those producing a range of [0,1], so the sigma metric and PAIRBONDS are omitted).
The removal of the least important five species does not modify the starting classification, but
leaving further five species out will be influential. Twenty and fifteen species provide the
same classification, and the same is true for 10 and 5 species. The index most sensitive to the
initial changes is 1-J4C, which increases slowly afterwards. Since the maximum number of
relocations is 10, the value of the MISC coefficient informs us that the first big change in-
volves the relocation of three, and then five objects from the intial groups. Actually, this index
seems to reflect quite well the ‘average behavior’ of the other five indices.
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Figure 9.5. A classification se-
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Comparison of fuzzy partitions. This approach is based on the U, . matrices in which the
weight 0< u;;<1 measures the degree of belonging of object j to class k. Two fuzzy partitions F
and G may be adequately represented by the corresponding matrices UF and Ug. Podani
(1990) suggested measuring the dissimilarity between F and G by the minimum sum of
squared deviations of the values in UF necessary to transform F into G. This symmetric mea-
sure is obtained by examining all the column permutations of Ur while UG remains un-
changed. More formally, we minimize the quantity

" . 1/2
Arg =(z z (g _”ij)zJ > (9.10)

J=l k=1

in which ¢ is the number of classes. The permutations are easily generated up to 7 or so
classes; larger values of ¢ rearely appear anyway. The above formula tolerates unequal num-
bers of classes in F and G; only dummy classes are to be added to the classification with the
fewer number of groups. Clearly, Formula 9.10 applies to hard partitions as well; recall that
they are just special cases of hard partitions (for each object, one weight is 1 and all others are
zero). There is a simple relationship between 9.10 and 9.7: A* = 2MINDMT. The maximum of
9.7 is therefore useful for normalizing Formula 9.10 as well.

The method is illustrated using the /ris data set. The 150 individuals are assigned to three
classes by the fuzzy c-means clustering algorithm, with the following values of the coefficient
of fuzziness: 1.10, 1.25, 1.5, 2.0 and 3.0. Since the coefficient cannot attain the value of 1, for
singularity problems, the k&-means classification of the same objects is considered as a compa-
rable hard partition. These operations provide a classification series the members of which are
compared in every possible pair using Formula 9.10. The dissimilarity matrix is then analyzed
by principal coordinates analysis (Figure 9.5). The first two axes account for 80% of the vari-
ation, indicating that the two-dimensional scattergram is a quite faithful representation of the
relationships among the classifications. Notwithstanding the presence of an arch in the result-
ing configuration, there is a clear ‘gradient’ from the hard partitions towards the fuzziest one.
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9.2.3 Dendrograms and cladograms

Being tree graphs, dendrograms and cladograms are more complex structures than the OUCs
discussed thus far snd their comparative evaluation is a real challenge for us. Regarding their
inherent topological structure, a dendrogram and a rooted cladogram are similar: both of them
summarize hierarchical relationships in form of a usually dichotomous tree with the terminal
nodes representing the objects. (I will not discuss unrooted phylogenetic trees here). In most
dendrograms, some values are assigned to the interior vertices (hierarchical levels) whereas in
cladograms each edge may have some associated weight. Despite these obvious differences, it
is useful to handle these OUC types together.

Matrix comparisons. The classical methods reduce the problem of evaluating dendrograms to
the comparison of matrices. The idea is that each dendrogram may be replaced by a descriptor
matrix C in which cji reflects the mutual relationship of objects j and & in the tree. This rela-
tionship, however, may be characterized in several ways as illustrated by Figure 9.6; and the
choice among these descriptors is not always trivial. Podani & Dickinson (1984) listed the
first five descriptors that follow; there is a sixth one, and it is possible that some other
descriptors will also be introduced in the future.

1. Cophenetic difference: it is the lowest hierarchical level at which objects j and & belong to
the same cluster (Fig. 9.6a). The levels pertaining to all possible pairs of objects are written
into the cophenetic matrix C which is an unequivocal representation of the dendrogram (e.g.,
Sokal & Rohlf 1962). It means that the tree can be perfectly reproduced from C.

2. Path difference: the number of vertices along the path between objects jand ; it is one less
than the number of edges connecting j and & (Fig. 9.6b, see e.g., Farris 1973, Phipps 1971,
Williams & Clifford 1971). This descriptor has been referred to under various misleading
names (topological difference, cladistic difference). Matrix T containing the pairwise path
differences summarizes full information on tree structure (topology) but the hierarchical lev-

Cjk| a b c
A Adn A

Figure 9.6. Dendrogram descriptors on the example of objects j and & in a dendrogram for 7 objects.
a: cophenetic difference, b: path difference (= 4), c: cluster membership divergence (= 5), d: partition
membership divergence (=5), e: subtree membership divergence (= 4).
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els are lost. It is a four-point metric, unsensitive to the position of the root and is therefore
better suited to unrooed trees (Podani 2000).

3. Cluster membership divergence is the number of objects in the smallest cluster containing
both j and £ (Fig. 9.6¢). The matrix M of divergences contains all information for the repro-
duction of tree topology (all values but the diagonal satisfy the conditions of being an
ultrametric, mjk is therefore a quasi-ultrametric, Podani 2000).

4. Partition membership divergence: This measure utilizes the property that adendrogramis a
series of nested partitions. Excluding the trivial case of all objects belonging to the same class,
a dendrogram implies a maximum of m—1 partitions. This maximum is not reached if there are
identical hierarchical levels or multifurcations. The relative position of objects j and & in the
tree may be expressed by the number of partitions in which these two objects belong to differ-
ent clusters (Fig. 9.6d). Although partition membership divergence is topological, the infor-
mation concerning the sequence of hierarchical levels in the tree is also preserved in the mm
matrix of divergences. Therefore, this descriptor is best suited to ranked trees in which the ab-
solute levels are replaced by their ranks.

5. Subtree membership divergence: This descriptor characterizes the tree based on its internal
branching structure. In a binary tree (in which only dichotomies appear), there are m—1
subtrees, including the dendrogram itself. In fact, each interior vertex hasits own subtree. The
relationship between object pairj, kis measured by the number of such subtrees in which they
do not occur together (Fig. 9.6¢).

6. Path length (patristic distance): If the tree-generating procedure assigns a length (or
weight) to each branch in the tree, then the sum of the lengths along the path between two ob-
jects provides a new descriptor, summarized in the path length matrix P. For the comparison
of phylogenetic trees, path length is the most appropriate, although — if we forget about branch
lengths — topological descriptors 2-3 and 5 may also be appropriate.

Some of the descriptors are not new: cophenetic levels were discussed already when
cophenetic correlation was introduced (Subsection 5.5.1) while patristic distances were de-
scribed in the context of additive trees (Subsection 5.4.4). The six descriptors emphasize dif-
ferent properties of the tree, and they are therefore sensitive to different within-tree
‘anomalies’. This must be kept in mind when selecting a particular descriptor for dendrogram
evaluations. For example, if reversals occur in the trees, then cophenetic difference and parti-
tion membership divergence become meaningless. The presence of multifurcations has detri-
mental effects on the behavior of path length and subtree membership divergence. On the
other hand, cluster membership divergence is not affected by reversals. When we wish to use
cophenetic difference, the pattern of increases in the hierarchical levels should also be consid-
ered carefully. The dendrograms of Figures 5.7a and 5.11a, for example, differ considerably
in this regard; the levels increase slowly in the first and ‘exponentially’ in the second. The use
of cophenetic differences is not recommended in this case, because the two dendrograms are
apparently not commensurable by levels.

Dendrograms and cladograms are compared by calculating the correlation or distance be-
tween their respective descriptor matrices. This univariate comparison is generalized to sev-
eral descriptors as follows. Assume that the two dendrograms to be compared are denoted by

D1 and Dy. Their squared Euclidean distance based on five descriptors will have the following
form:
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in which the states of x(@) represent the descriptors. For cladograms, descriptors 2, 3, 5 and 6
may appear in the third summation. Normalization is necessary to eliminate the inevitable
scale differences among descriptors. Cophenetic levels are rescaled to fall into the interval
[0,1] for each dendrogram. Cluster membership divergence is divided by m. Partition mem-
bership divergence may be normalized in similar way: the scores are divided by the number of
partititons implied by the given dendrogram (max m—1). Path difference and subtree member-
ship divergence are normalized by the actual maximum found in each dendrogram.

The following example is based on an extensive survey by the author (Podani 1985), and
illustrates dendrogram comparisons in a complex design. The objective is to detect the rela-
tive impact of sampling (quadrat size) and data type upon the results of a phytosociological
classification. The percentage cover scores of species were recorded in 20 quadrats, each con-
taining a nested series of eight different sizes (in the manner shown in Fig. 1.9). The raw data
were used to derive further three data types: two were obtained by the Clymo function (For-
mula 2.16a, ¢ = 3 and ¢ = 15), and the third was the ultimate simplification into the pres-
ence/absence form. The four types of scores may be arranged into a data transformation
series, with two transitional stages between the quantitative and presence/absence types. The
simultaneous change of data type and quadrat size provided 32 combinations, each character-
ized by its own 20x20 distance matrix and the dendrogram obtained from this by sum of
squares agglomeration. The 32 distance matrices were then compared in all pairs using the
correlation coefficient to yield a 3232 matrix between these results. In its PCoA ordination
(Fig 9.7a), axis 1 is very strongly unipolar and therefore uninformative. Axes 2 and 3, al-
though explaining only 9 and 2.3% of the variation, respectively, are more interesting to us.
The scatter diagram shows clearly that data type is more influential than quadrat size which is
most negligible in the presence/absence case. The trends are less clear-cut, but still recogniz-

a b

% 2 0\1

Figure 9.7. Complex comparisons to illustrate the joint effect of quadrat size (increases shown by ar-
rows, from 0.25 to 16 mz) and data type (ll=cover, d= Clymo c¢=3, O=Clymo c=15, @=presence/ab-
sences). The PCoA ordination of distance matrices (a) shows the trends more clearly than the
ordination of dendrograms (b). Redrawn after Podani (1989d).



Comparative evaluation of results 327

able in the PCoA ordination of dendrograms from their matrix calculated using Formula 9.11
(Fig. 9.7b; the two axes explaining 21 and 16%). Along the first axis of this ordination, the
first two as well as the second two steps of the data transformation series cannot be distin-
guished whereas the effect of quadrat size is the smallest in the presence/absence case, as be-
fore.

Graphical comparison. Two dendrograms or cladograms may be contrasted graphically using
their respective descriptor matrices, as described in subsection 9.2.1.

Ultrametrics. A completely different approach to dendrogram comparison is due to Dobson
(1975). The method examines the ultrametric inequality for each object triplet and then enu-
merates the number of triplets for which the inequalities are not the same in the two
dendrograms. In other words, triplet {7, j, k} counts if c¢;;<c;z=cjy, satisfies in Dj but we have

m
cik<cij=cjk ot cjk<cijj=cik in D2. This number may be divided by the possible maximum, ( 3),

i.e., the number of triplets for m objects, to provide the ultrametric dissimilarity measure
which has the range of [0,1].

Branches and branch lengths. Another group of methods operates by counting the branches
(edges) or by adding the associated lengths to derive tree dissimilarity measures. The basic
idea is due to Robinson & Foulds (1979, 1981). The original approach was developed for
unrooted trees although, with some modifications, they apply to dendrograms as well. The
simplest index involves the removal of one branch of the tree at a time. In a dichotomous
unrooted tree, the number of interior branches is m—3. The removal of either of them provides
a two-cluster partition of the obj ects'. An interior branch of D1 matches an interior branch in
D; iftheir removal provides identical partitions. (For dendrograms, the two branches coming
from the root must be treated as a single branch to allow the comparison.) The number of mis-
matching branches is then used as a measure of agreement between the trees (symmet-
ric-difference distance or partition metric, Robinson & Foulds 1979, 1981). This number,
divided by the possible maximum yields the edge matching coefficient for m>3.:

number of mismatched branches in D, and D.
EM,, = - ! 2. 9.12)

Its range is [0,1]; O indicating full agreement, 1 corresponding to maximum disagreement.
Measure 9.12 does not make any distinction between branches; their position in the tree or
their lengths do not matter. However, if the sum of lengths of mismatched branches is divided
by the total length of the two trees, then we have a weighted measure.

For unrooted trees, the best known measure is the nearest neighbor interchange (nni) met-
ric (Waterman & Smith 1978) or crossover (Robinson 1971). We have seen in the discussion
of cladograms that the interchange of subtrees pertaining to an interior branch is part of the
optimization algorithms. According to the nni metric, the distance between two trees is the
minimum number of such changes necessary to convert one tree into the other. For large m,
determining the maximum is a formidable task, but Brown & Day (1984) described a fast ap-
proximation to the nni metric.

1  Branches leading to the terminal noda are disregarded, since their removal yields trivial partitions (one object
plus all others) which always appear in both dendrograms.
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9.2.4 Comparison of ordinations

Any ordination may be represented by the 7-dimensional coordinates of m objects. In most
comparisons, the first p (<<¢) dimensions are of interest only because the others do not convey
meaningful information (in sense of percentage variance, for example). Pairwise comparisons
of ordinations, like any other OUCs, may be useful to assess the relative influence of vari-
ables, data types, resemblance functions and ordination algorithms upon the resulting config-
urations. The taxonomic congruence of ordinations of OTUs based on vegetative and
reproductive characters may also be evaluated in this way. Since the description of shape in
terms of coordinates is also an ordination (Subsection 7.6.2), the comparison of shapes by su-
perposition methods is a special case for this approach. In one dimension, ordinations may be
compared by the product moment or the rank correlation coefficient. In most cases, interest
lies in at least two dimensions and correlations between coordinates do not work. Matrix cor-
relation, however, may be a solution for two or more dimensions in such a way that each ordi-
nation is described by the distances of m points in the p-dimensional subspace (e.g., Podani
1989d, Figure 9.8). If such an approach is plausible, then the graphical comparison of two or-
dinations will also be possible. Notwithstanding the applicability of matrix correlation, a more
elegant geometric procedure has received general acceptance in numerical ecology and
morphometrics. This is the so-called Procrustes method, developed partly independently by
several authors (Green 1952, Gower 1971a, Schonemann & Carroll 1970). The name refers to
the ill-famed figure of Greek mythology, Procrustes the giant, who seized travelers in Attica
and tied them to an iron bedstead by cutting off their legs or stretching them until they fitted it.
Hence the expression, Procrustean bed which means “being forced to strict conformity under
violent measures”. The name reflects that the ordinations must be subjected to some drastic
manipulations before any meaningful comparisons can be made. The basic assumptions of
Procrustean analysis are that two ordinations are deemed indistinguishable if:

— either is obtained by shifting the other (i.e., by adding a constant to all of its coordinates);
— either of them is obtained via multiplying the coordinates of the other by a constant value;

— the rotation of either ordination by an angle o reproduces the other, including the special
case of o = 180° (reflection).

Figure 9.8. Meta analysis of ordi-

nations using the same data as in
Figure 9.7. A point represents a
PCoA ordination of 20 quadrats for

a given combination of data type
and quadrat size. The PCoA of or-
dinations started from the comple-
ment of the matrix correlations for
the first two original dimensions. \D
Axes 2 and 3 are shown, with their

relative percentages being 14 and
7%. Contrary to ordination 9.7a, the
two extreme data types appear less
sensitive to quadrat size changes
(redrawn after Podani 1989d).
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a b

Figure 9.9. Procrustes analysis. The dissimilarity of two ordinations of three objects (a and b) is mea-
sured by the sum of squared distances (1+2+3) between the corresponding points in the best fit (c).

Starting from these assumptions, the comparison of two ordinations involves maximizing the
fit of one ordination over the other by centring, rotation and dilation (rescaling). The best fit is
then measured by the sum of squared distances between the corresponding points (Fig. 9.9).

More formally, if the centred coordinates of m points in p dimensions are written into ma-
trices X and Y, then the minimum value of the following function is sought:

3% - ) = u[X-YY (X-Y)] 9.13)

=1 j=1
This is calculated by leaving X unchanged and transforming Y with the p\p orthogonal rotat-
ing matrix H:
H=VU 9.14)
in which U and V are derived from the singular value decomposition of X'Y (Appendix C):
X'Y =USV' (©.15)
(S is a diagonal matrix containing the square roots of eigenvalues). The goodness of fit is then
expressed by the following formula:
R; = t[(X-YH) (X-YH)]=
— tr(XX') + tr(YY') - 2r(YX'XY")” % . (9.16)
This is a symmetric measure, influenced heavily by the actual magnitude of coordinates. This

undesirable property is eliminated by considering a multiplying factor ¢ when matrix Y is ro-
tated into ¢YH:

c=tr(YHX") /tr(YY'), (9.17)
which leads to the following statistic:
R2 = tr(XX") - 2(tr(YX'XY") ) / tr(YY"). (9.18)



330 Chapter 9

However, this is no longer symmetric, therefore Gower (1971a) proposed to normalize the in-
put ordinations to unit sum of squares right after centring:

tr(XX') = tr(YY') = L (9.19)

It means that the squared distances of points from the origin in each ordination produce a unit
sum. Formula 9.18 ig then calculated from the normalized configurations; and the result is
now abbreviated as d”. As Sibson (1978) pointed out, R; may be normalized directly:

s =R; /r(XX"). (9.20)

This measure ranges from 0 to 1. The relationship between d* and s is:
d>=2(1-1-v,). 9.21)

It follows immediately that the value of & falls into the interval [0,2], O indicating perfect fit,
2 reflecting the maximum possible departure of one ordination from the other.

As an example. let us compare the PCA and COA ordinations of the objects (columns) of
Table Al. According to the first two axes (Figures 7.2 and 7.14), the value of & is 0. 1, which
seems quite low. We cannot make more statements on the result, however, until a reference
basis is available for this comparison (see next section). It is noted that for the first three di-
mensions there is an inevitable increase of squared distances (d = 0.309), the relative change
indicating that the two ordinations differ most markedly along axis 3.

9.2.5 Comparison of rearranged matrices

The need of comparing rearranged matrices rarely appears in the literature, although the com-
parison of rearrangements obtained manually or via objective methods is as interesting as the
evaluation of other OUC types. Here, the method developed for the comparison of
cross-partitioned block classifications (Podani & Feoli 1991) is introduced briefly. The trans-
formation metric between partitions (Formula 9.7) is modified for this purpose. Let X; and X;
be two rearranged data matrices of size 7 m, with p clusters for rows and ¢ clusters for col-
umns in both. The first task is to determine the minimum number of rows and columns to be
relocated in X; to get X; (or vice versa). The two row- and the two column-classifications are
compared separately to derive the values of M, and M, ..o (for brevity, MINDMT is
replaced here by M). These provide the number of data values to be moved:

K' - lij( sorok) + anj(mzlnpnk) Mij(.mmk)Mij(mzlnpnk) (9'22)
which may be divided by the possible maximum to obtain the k index:
K. = Mlj(r(m 's) + anj(mlumm) Mlj(r(m Y)Mlj(mlumm) (9 23)
7" mmaxM + nmaxM — maxM maxM ' '

ij(rows) ij(columns) ij(rows) ij(columns)

Its range is [0,1], O indicating perfect agreement, 1 showing maximum discrepancy.

The comparison of matrices rearranged by seriation is achieved through the comparison of
row and column permutations for data matrices, and row permutations for resemblance matri-
ces. The strategy is that row-wise and column-wise dispositions are counted and then summed
for data matrices, whereas only the rows are considered for resemblance matrices. Let the row
and column indices in the first matrix be given by i and j, respectively, and the indices of the
corresponding rows and columns in the second matrix be denoted by y(i) and y(j). Then, the
desired quantity will be obtained as
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Ko =2 li=y(D)]+ 2 =301 924)

Only the first term is used for resemblance matrices. A measure more elegant than this is anal-
ogous to MINDMT or the nni metric and is defined as the minimum number of neighboring
rows and columns to be interchanged iteratively in the first matrix to obtain the second. As ex-
pected by the trained reader, the determination of this transitional measure is a much harder
problem than calculating Formula 9.24.

9.3 Hypothesis testing, expectations and distributions

The pairwise comparison of results provides a dissimilarity measure which is either con-
strained to lie between fixed limits or has no theoretical upper bound (Function 9.11 is an ex-
ample for the latter). The lack of upper bound poses no problems until we remain within the
same meta-analysis such that the number of objects and other parameters of the survey do not
change. Even the fixed upper bound, usually 1, is of little help whenever dissimilarity values
coming from different surveys are to be contrasted. Can we surely say that a dissimilarity of &
=1.42 between two ordinations of 40 objects implies greater disagreement than another value
of @* = 1.40 calculated for two ordinations of 10 objects? Unexperienced analysts might say
that o’ ranges from 0 to 2 regardless the value of m, consequently the difference of 0.02 is a
true indication of a slightly higher discrepancy between the 40-object ordinations. A statisti-
cally-minded investigator, however, cannot make such statements! Correct comparisons be-
tween dissimilarities can only be made if the reference distribution of the measure is known,
together with all of its parameters, especially the expectation (mean). In the example above,
for m =40 the dissimilarity value of 1.42 is much below the mean, while for m = 10 the value
of 1.40 is far beyond the expectation! Thus, a value of 1.42 implies a relatively strong agree-
ment between 40-object ordinations, whereas 1.40 for 10-object ordinations indicates quite
high dissimilarity. “Everything is relative”, therefore any statement based on the numerical
values only would be unwise. Furthermore, knowledge of the reference distribution is abso-
lutely necessary if we wish to make a significance test of the dissimilarity measure. We may
want to tell whether two OUCs obtained independently for the same objects are more similar
than expected for random OUCs (significant result), or their dissimilarity falls into the range
which characterizes most (usually 95%) of the randomly generated OUC pairs anyway (lack
of significance). By addressing these questions, we reached a challenging and rapidly devel-
oping area of multivariate statistics.

Our problems are further complicated by the fact that the underlying distribution of most
dissimilarity measures for OUCs is unknown. An exception is the partition metric (Formula
9.12) whose exact distribution has been derived up to 16 objects (Hendy et al. 1984). Some pa-
rameters of certain measures of cladogram dissimilarity are also known (Steel & Penny 1993).
Usually, however, for practical problem sizes the distributions are not available or, if some
theory is already developed, the computations are exceedingly difficult and impractical. The
solution is offered by Monte Carlo simulation algorithms, or more precisely, a subset of these
methods: the randomization and permutation tests.
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The principal issue in Monte Carlo simulation is the formulation of a baseline situation
corresponding to the null-hypothesis. When we sit down and think over the actual problem, it
may turn out very quickly that the choice among different variants of Monte Carlo simulation
is not as easy as earlier thought. Monte Carlo methods, in the strictest sense of the word, are
used if the distribution should refer to randomly generated OUC pairs and we can say that any
OUC is equally likely to occur in the random sample. Using an appropriate random number
generator we simulate, say, 999 pairs of dendrograms with random hierarchical levels and en-
tirely random bifurcations (the exact algorithm is not essential at this point, but see Lapointe
& Legendre 1991, Podani 2000). The dissimilarity is calculated for every pair of dendrograms
and then the 999 values are arranged into categories to draw a frequency histogram of dissimi-
larities. The actual dissimilarity to be tested, d, is the 1000 value. Using the 1000 instances of
the dissimilarity measure we may estimate the probability that for random dendrograms we
get adissimilarity less than or equal to d. If this probability is lower than the previously speci-
fied significance level a (usually 0.05), then the two actual dendrograms can be considered
significantly similar and the null-hypothesis is rejected. For a random sample of 1000 and o=
0.05, this happens ifat least 950 of the simulated dissimilarities exceed d. In the opposite case,
we retain the null-hypothesis by saying that the actual d value could be obtained for random
pairs of OUCs (at the given a) and the similarity of the two dendrograms is not significant.
The permutation tests*are based on similar grounds, with the only substantial difference being
in the manner the sample OUCs are generated. In this case, the OUCs are not entirely random;
only the objects are permuted by random relabeling. In other words, the arrangement of the
objects is changed while the basic structure of the OUCs (a configuration of points in an ordi-
nation, a tree graph, etc.) remains constant. The so-called exact permutation tests derive the
sampling distribution of the measure by generating all the possible permutations of objects, a
strategy restricted to relatively small problem sizes. In practice, only an estimation can be
made based on a limited number of random permutations. The larger this number, the better
the aproximation to the ‘true’ distribution. For dendrograms, Lapointe & Legendre (1992)
found that 1000 pairs provided a reasonably good estimate, while for matrices Jackson &
Somers (1989) suggested as a rule of thumb a minimum of ten-to-hundred thousand simula-
tions. In examining the distribution of measure 9.7, Podani (1986) found that 5000 pairs ap-
proximated very well the exact distribution. Clearly, there are no generally valid guidelines
and much depends on problem sizes, but a process in which sample size is increased gradually
along with repeated tests may be helpful to reach a stable result. Needless to say that permuta-
tion tests are typical computer-intensive procedures of contemporary statistical analysis.

The basic strategies of Monte Carlo and permutation tests are summarized for the major
types of OUCs in Table 9.1. A “pure” Monte Carlo simulation is usually more difficult to
achieve than simple permutation tests. The number of possible OUCs , from which the simula-
tions derive a sample, is usually very high, often infinite, in sharp contrast to the relatively

2 The terms permutation test and randomization test are practically synonyms (Manly 1991). In the present case,
the word permutation appears more straightforward, better indicating how the distributions are generated.
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Table 9.1. Comparison of the strategies of Monte Carlo simulation and permutation tests for different

types of results.

Result (OUC)

“pure” Monte Carlo
simulation

Permutation test

Resemblance matrix

Hard partition

Fuzzy partition
Dendrogram
Rooted cladogram

Ordination

Entirely random
resemblance values

Random assignment of objecs into &
classes, regardless of their size
Random weights for each object such

that their sum is 1

Random levels, random bifurcations,
randomly selected objects

Random branch lengths, bifurcations
and object assignments

Random coordinates in every
dimension

Columns (and rows)
randomly interchanged

Random assignment of objects into
k classes such that original group sizes
are maintained

The original weights are retained, the
objects are randomly assigned to them

The objects in terminal positions are
randomly mixed

As above

Original positions retained, objects
randomly relabeled.

small number of possibilities in the permutation tests. The Monte Carlo methods are more
general, while the permutation tests are suited to the actual circumstances.

9.3.1 Matrices

The difference between Monte Carlo simulation and the permutation-based strategy is illus-
trated through the significance test of matrix correlation, a method almost exclusively used for
evaluating resemblance matrices D and E (Mantel 1967). Clearly, comparing the actual cor-
relation with a threshold value found in a standard statistical table would be unwise because
the values within each matrix are strongly interdependent. Instead, the rows (and therefore the
columns) of matrix D are randomly permuted many times, and each ‘perturbed’ matrix is also
correlated with matrix E. Then, the significance of rpE is evaluated using the empirical distri-
bution of the correlations coming from the permutations (Mantel test).3 According to the
null-hypothesis, the mechanisms generating the values in D are independent from those re-
sponsible for the structure implied by E so that it is likely to get 7pg even though one of the
matrices is completely ‘confused’. If it is not true, then the background mechanisms for the
two matrices are not independent, the permutations destroy the basic structure and there fore
the null hypothesis is rejected.

In addition to permutations, a test may be based on entirely random distance matrices. The
keystone in this approach is to simulate distances guaranteeing that they correspond to some
distance/dissimilarity structure, i.e., they are not mere random numbers. A possibility is to
randomly permute the rows and the columns of the original data matrix (if available) and to
calculate the correlation between the D matrices obtained from randomized data and the other

3 More precisely, it was the cross-products, rather than the correlations, that Mantel used in the computations. It is
areasonable choice because the cross-products are themselves sensitive to permutations, while the other terms in
the correlation measure are invariant. If the entries in both matrices are standardized by standard deviation
beforehand then the cross products will be equal to the regression coefficient. of D with repect to E and vice versa.
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Figure 9.10. Frequency histogram of matrix correlation in a Mantel test based on 1000 permutations
for a: distances calculated from the dune vegetation data for species and for environmental variables
(Table A4); b: distance matrices calculated separately for monocots and dicots of Table Al. In the lat-
ter case, arrow points to the position of the test statistic in the distribution.

matrix E which remains intact, and to repeat the procedure many times. The distribution of the
original dissimilarity measure is also of some concern, because it has some influence on the
permutations (Hajdu 1981, Gower & Legendre 1986). In fact, the specific behavior of the for-
mula should also be built into the simulation model, although the procedure may become too
cumbersome this way.

As an example, let us examine the dune vegetation data again (Table A4). The distances
among stands are calculated using species scores to provide the first matrix, whereas the sec-
ond distance matrix is derived from the ‘environmental’ data. According to the null hypothe-
sis, the two groups of variables are independent, so that the value of matrix correlation is less
than or equal to 100(1-a)% of correlations obtained from permuted matrices. The actual value
of matrix correlation is 0.44, which is higher than all the simulated values (Fig. 9.10a). Thus,
the null hypothesis is rejected: the two groups of variables lead to significantly similar dis-
tance matrices, indicating dependence of species performance on the environment.

The second example is more artificial, yet useful to illustrate the opposite situation.
Starting from Table Al, we examine whether the distance matrix of stands calculated for
monocots (7 species) significantly correlates with another matrix based on the dicots (5 spe-
cies). The correlation is 0.091, suggesting immediately that the two matrices have little to do
with each other. This is confirmed by the permutation test: 31% of the simulated values are
larger, 69% are smaller than 0.091 (Fig. 9.10b). In other words, every third permuted value is
higher than the actual statistic so the null-hypothesis is accepted: the two groups of angio-
sperms provide matrices as dissimilar as the randomizations. This statement is valid for this
example only; bear in mind that the validity of the Mantel test is restricted to the two matrices
being compared!

9.3.2 Hard partitions

The distribution of measures of partition agreement is also best-examined by Monte Carlo
simulations, even though in some circumstances some parameters could be derived exactly
(cf. Hubert & Arabie 1985). Suppose that a d dissimilarity value for partitions P and Q is to be
tested for significance. The number of clusters is s and ¢ respectively, with cluster sizes p; and
g;. In the plain Monte Carlo case, both the numbers of clusters and the cluster sizes are results
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Figure 9.11. The fre-
quency histogram of
the partition agreement
measure MINDMT ob-
tained by Monte Carlo
simulation for m = 80,
s=t=2,3,4,5,6. The
points are connected
only for clarity. Each
distribution is based on
the comparison of
10000 pairs of parti-
T T J - tions (Podani 1986).
MINDMT

10004

of random effects. However, it is more reasonable to keep at least s and ¢ constant during the
simulations. Even more attractive is the permutation test in which the random partitions are
generated without changing the marginal values of the cross-classification table, i.e., p; and g;
(Hubert & Arabie 1985).

The intermediate situation, with s and ¢ fixed (and s = ¢ for all simulated partitions), is il-
lustrated for the MINDMT measure for 80 objects (Figure 9.11). As seen, when s increases the
expected dissimilarity also increases, whereas the distribution becomes less skewed. The ef-
fect of fixing cluster sizes is shown by the permutation based-simulations (Fig. 9.12). For
comparison, the first example shows the most general case with free class sizes (Fig. 9.12a)
for which the distribution agrees well with the histogram of Fig. 9.11, case of s = 2. At fixed
class sizes, with gradually increasing the difference between the size of the two classes, the
expectation decreases and the distribution becomes more symmetric (Fig. 9.12b-e).

It is worth examining the significance of changes depicted by Fig. 9.4. The number of
species for which we have a ‘significant’ departure from the reference classification may be
of interest. However, no formal statistical test can be made in this case because the partitions
to be compared are not independent, being partly based on the same subset of variables. Nev-
ertheless, the ‘critical values’ do provide a good basis for the comparison of functions of par-
tition agreement. Let us choose the 95% ‘probability level’. For each coefficient, the
simulations provide the threshold value below which the two partitions are significantly simi-
lar. Cluster sizes were not fixed, because cluster sizes changed during species reduction. The
threshold values are: 0.5 (MISC), 0.655 (1-LAS), 0.445 (1-RAND), 0.585 (1-JAC) and
0.415 (1-OCH). Now it becomes clear why are so diverging the values for the very same
comparison. The distribution varies with the coefficient so that each value may only be com-
pared to its own significance threshold, rather than to the values provided by other formulae.
A fast scrutiny of the diagrams shows that species reduction to as low as 5 is not enough to
modify the starting partition to an extent necessary for a ‘significant’change for any coeffi-
cient.

9.3.3 Fuzzy partitions

Fuzzy partitions are described by cluster membership weights (coefficients of belonging)
which provide a total of 1.0 for each object. In the most general Monte Carlo situation, en-
tirely random weights could be generated such that this condition is met. The permutation
tests, on the other hand, maintain the original values while permuting the objects. In other
words, the rows of the weight matrix Uj (Section 4.3) are randomly mingled while the other
matrix, Uj, remains unchanged. The columns and therefore the column totals (the sum of
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Figure 9.12. Estimated
probability distribution of
MINDMT for m = 80, s =
¢t = 2 without fixing clus-
ter sizes (a) and with
fixed cluster sizes shown
in the upper corner (b-e).
Each histogram is based
on the comparison of
10000 pairs of partitions
(Podani 1986).
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weights for each class) are not changed either to ensure compatibility with the permutation
test of the agreement of hard (crisp) partitions. This topic is very little investigated and de-

tailed simulation studies are in order.

9.3.4 Dendrograms and cladograms

Dendrograms and cladograms are perhaps the most complex mathematical objects among all
types of OUCs encountered in the analysis of multivariate biological data. Their comparison,
as we have seen above, as well as their simulation, as we shall see below, represent an intricate
subject area. The topic is very far from being exhausted even in mathematics, but we know
that there are a few basic assumptions that must be fulfilled for a correct test to be made. These

include:

e The set of simulated trees is in fact a sample from the universal set of all possible
trees. We must guarantee that each possible tree has the same chance of being se-
lected. The question of what trees are in fact possible is always context-dependent

(see below).

e  The process of the simulation should be compatible with the formula to be tested. For
example, if the measure is insensitive to the hierarchical levels, such as coefficients
derived from path difference and subtree membership divergence, then the number of



Comparative evaluation of results 337

possible dendrograms — and cladograms — is obviously Vi, (Formula 5.16), and each
of the V;, trees may appear in the simulation (e.g., Shao & Rohlf 1983). If the measure
does reflect the order of levels (partition membership divergence), then the reference
distribution should rely upon H,, different dendrograms (Formula 5.17) — a value
considerably larger than V. The latter case is discussed by Lapointe & Legendre
(“double permutation algorithm”, 1991)4 and — with less emphasis — by Steel &
Penny (“Drip” measure, 1993). The most difficult case is the simulation of hierarchi-
cal levels to provide a basis for testing cophenetic comparisons. Here, the number of
possible dendrogram structures is again Hy, but randomly generated levels give rise
to an infinite number of possible trees. Although Lapointe & Legendre (1991: 189)
consider the possibility of such simulation, they admit that the best strategy is to re-
strict the possible hierarchical levels to those actually observed in the two dendro-
grams being compared.

e  The above two paragraphs concern the plain Monte Carlo simulations. Their relation-
ship to permutation tests is somewhat unclear at the moment. The comparison of two
dendrograms follows the logic of Mantel tests only if the topologies and levels are
fixed while the objects are permuted over the terminal vertices of either (or both?) of
the dendrograms. Apparently, Lapointe & Legendre (1995) prefer the full random-
ization strategy against permutations. However, it is easily conceivable that we do not
regard all possibilities to be equally likely in the random sample. Chained
dendrogram shape is a case in point. Chaining is commonly observed with single link
clustering while exceptional by complete linkage (recall the examples discussed in
Chapter 5). Therefore, if single linkage is the strategy used, then balanced
dendrogram shapes should be considered much less likely than chains and complete
randomization would be “biased” in some sense.

Let us see a more concrete example. The dissimilarity between the two unrooted
cladograms of Figure 6.1 may only be tested using the permutation-based approach. One tree
is fully dichotomous whereas the other has many multifurcations, hence full randomization is
not justified (Penny et al. 1993). Expressing tree topologies in terms of two path difference
(PD) matrices, their distance is 126. After ten million permutations, this distance proved to be
highly significant, because this value or an even lower distance occurred less than 100 times.
In other words, the actual statistic is significant at the probability level of p<0.00001. The
conclusion is that the language tree and the genetic tree are statistically similar — although the
explanation of background effects is a different matter.

As a further illustration of permutation tests, group average clustering was applied to the
two distance matrices used in the second example in Subsection 9.3.1. The resulting
dendrograms are presented in Figure 9.13. Since the distance matrices were not significantly
similar, we can expect that the dendrograms derived from them will not be similar either. We
calculate two values, the matrix correlation between the respective PD matrices and between
the partition membership divergence (PMD) matrices. The results are —0.01 and —0.22, re-
spectively. In the histogram based on 1000-1000 simulated values obtained for entirely ran-
dom dendrograms, these statistics fall into the acceptance region at the probability level of o
= 0.05. Nevertheless, the two correlations do not imply the same thing which turns out if we
carefully examine the distributions. The PD-based correlation is almost equal to the mean of

4 The dendrogram simulator routine of SYN-TAX uses the random agglomeration strategy which is
computationally more efficient (Podani 2000).
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Figure 9.13. Group average clustering of a b
sample sites (Table Al) from Euclidean dis-
tances calculated using monocots (a) and di- 0 a0 |
cots (b).
12645576 16236784

simulated values (—0.004), whereas the correlation using partition memberships is very close
to the threshold of significant difference (at o = 0.05, the simulated threshold is —0.267 while
the mean is 0.004). In other words, regarding the branching pattern the two dendrograms dif-
fer to the extent expected for two random ones whereas according to the orders their large dis-
tance is a rare event even for random dendrograms We may conclude that measures of
dendrogram distance do not say much by themselves; knowledge of the underlying distribu-
tion increases interpretability of the statistics.

9.3.5 Ordinations

Random ordinations are easier to generate than dendrograms. For example, Podani (1991)
suggested to simulate random and uniform coordinates for the objects in the pre-selected & di-
mensions to serve as a basis of hypothesis testing. Multivariate normality of random coordi-
nates or other Monte Carlo models are also conceivable in the derivation of a random sample
of ordinations. In these cases, we do not have to worry about the scale on the axes, because
Formula 9.21 of Procrustes analysis implies normalization to unit sum of squared distances
from the origin.

Permutation tests maintain the original coordinates while relabeling the points randomly.
Of course, this operation implies a null hypothesis completely different from the plain Monte
Carlo case, because the only point scatter allowed in the simulations is the actual one. This
must be remembered when evaluating the test statistics. However, as the following example
demonstrates, the discrepancy between full randomization and permutation decreases when
the number of dimensions is increased.

The PCA and COA ordinations of objects of Table Al were alread}/ compared at the end
of Subsection 9.2.4. Let us now generate the reference distribution of ¢~ for two and three di-
mensions based on full randomization using the uniform distribution (Fig. 9.14a) and on ran-
dom permutations (Fig. 9.14b). Beware that the two ordinations being compared are not
independent since they are calculated from the same data. Thus, we do not perform a formal
significance test as such; the simulated distributions will only be used to assess the departure
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Figure 9.14. The distribution of Procrustean dissimilarity (a'2 , Formula 9.21) between two ordinations
of 8 objects in two (a) and three (b) dimensions. Dotted lines (fully random case) and solid lines (per-
mutation) are used to improve clarity of the histograms.

of d* from the expectation, thus achieving some ‘normalization’ of the coefficient. The simu-
lated means are 1.14 and 0.95, respectively, for two and three dimensions, regardless the sim-
ulation strategy. The comparison of actual dissimilarities (0.1 and 0.309) to these expectations
shows that in two dimensions the two ordinations are relatively more similar than in three di-
mensions, much more than one might think by judging the absolute difference between the
values (0.209). The major difference between the simulated histograms is that the ranges are
slightly wider for the permutations (solid lines, Fig. 9.14) than for the random uniform strat-

egy.

9.3.6 Unplanned comparisons — in general

The examples discussed thus far share a common property: when there were more than two
OUCs compared simultaneously we did not perform any significance test of their dissimilari-
ties; hypothesis testing was restricted to single pairs only. We had a good reason to do so: sta-
tistical analysis and the choice of the probability level in multiple comparisons must be done
very carefully. Suppose that we have & results to be compared, so that the total number of pairs
is g = k(k—1)/2. If we select certain pairs a priori such that they are independent (OUCI vs
0OUC2, 0UC3 vs OUC4, and so on), then the test may be based on the simulated coefficient as
decribed previously. However, if we do not know in advance which independent pairs are of
interest to us, but rather we wish to select ‘significantly’ similar OUC pairs from the set of g
pairs (a posteriori test), then the usual thresholds do not apply because of the accumulation of
Type I error. If the test were made in the usual manner, then more values would be regarded
(erroneously) to be significant than there actually are at the given probability level. To avoid
this, a more rigorous test is to be made by increasing the threshold dissimilarity (right-tailed
tests) or decreasing it (left-tailed tests). There are several possibilities to accomplish this, but
we show only two:

e  The threshold is redefined such that the total Type I error for all the g comparisons does

not exceed a.. In order to do it correctly, the probability level for a single pair must be low-
ered according to
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o =1-(1-0)/* (9.25)

whereas the reference distribution is the same as for two OUCs. This formulation has
been originally suggested for the multiple comparison of group means (cf. Sokal &
Rohlf 1981a).

e Another possibility that deserves mention is the simulation of the distribution of ex-
treme values. In the general Monte Carlo model, a set of £ random OUC is generated
while in the permutation case, all OUCs in question are permuted (randomly
relabeled). Then, comparisons are made in all possible pairs and the extreme dissimi-
larity (usually the minimum) is found. This is repeated many, say, 1000 times to ob-
tain the distribution of extreme values derived from comparisons that are not
independent. After selecting a probability level o, we identify the associated thresh-
old in the histogram of extremes. This is used in testing whether any value from the g
comparisons of original OUCs is significant.

Letus examine the effect of the above restrictions upon the comparison of partitions using
the MINDMT formula. Assume that there are 80 objects, divided into two clusters in each of
five independently derived classifications. In the planned strategy with a =0.05, from the dis-
tribution on the left of Fig. 9.11 we have that the threshold is MINDMT = 31, so that an actual
dissimilarity equal to or lower than this value would indicate significant similarity between a
given pair of partitions. The five classifications form 10 pairs whose comparisons cannot rely
upon the same critical value. From the simulated distribution of extremes (minima), at o =
0.05 we obtain that the adjusted threshold of MINDMT is 27. Consequently, we shall find
fewer pairs of OUCs to be significantly similar than would otherwise be detected by disre-
garding the accumulation of Type I errors. Note that, for ten pairs, Formula 9.25 provides o
= 0.005, leading from the simulation of the distribution of MINDMT (Fig. 9.11) to the same
critical value (27).

9.4 The consensus approach

The term consensus, quite familiar for us from everyday political declarations, refers in biol-
ogy to a synthesis of & alternative and equally important results derived for the same set of ob-
jects. This new result emphasizes agreements among the competing OUCs and is usually
considered to be a more adequate representation of inter-object relationships than any starting
OUC by itself. This is partly because consensus generation may eliminate the effects of our
subjective choices regarding the number of variables, data types, resemblance functions and
clustering or ordination procedures necessarily made during processing of our data. Also,
whenever a procedure yields several different, yet equally optimal final results (e.g., clado-
grams), the only resolution is their synthesis into a new result. A first glance at the vast litera-
ture of relevant methods suggests that although consensus generation is conceivable for any
kind of results of multivariate data exploration, hierarchical classifications represented by
dendrograms and cladograms have received the most attention.

9.4.1 Consensus partitions

First, hard partitions containing disjunct, non-overlapping classes will be considered. The
consensus method aims to synthesize k> 2 partitions of m objects — in which the number of
classes is not necessarily the same — into a new partition. Although there have been several at-
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tempts to find a single consensus partition (see below), Neumann & Norton (1986) pointed out
that the consensus problem usually has several, equally acceptable solutions. All of them can
be derived from the so-called strict consensus defined as the unique partition in which any
classj contains only those objects that belong to the same clusterin all of the & starting classifi-
cations. This is not contradictory with any initial partition but nevertheless has the potential
disadvantage that there may be many, even m consensus groups if the differences among parti-
tions are high. Therefore, the practical utility of strict consensus partitions is often question-
able. Successive fusions of classes of the strict consensus provide a series of intermediate
consensus partitions in each group of which the objects occurred together at least in &1, k-2,
k=3,... partitions. Ultimately, these fusions provide the other extreme synthetic classification,
the loose consensus. In this, all objects that belong together in at least one of the initial parti-
tions appear in the same group. The disadvantage of loose consensus is that the presence of a
few objects of uncertain group membership leads to a single trivial consensus group. Two or
more loose consensus clusters indicate that no member of any group was ever clustered to-
gether with any object from any other group, i.e., the consensus clusters are fully isolated.

To illustrate the above consensus series, let us consider the following sample partitions of

10 objects:

Pi={1,234} {56,789, 10}
P>=1{1,2,3,4,56} {7,8,9,10}
P3={1,2,3,4,5 {6,7,8,9,10} (9.26)
P4=1{1,2,3,7} {4,5,6,8,9,10}

Their strict consensus partition is given by:

Ps={1,2,3} {4} {5} {6} {7} {8,9, 10}

There are several intermediate consensus results, for example:
Pc=1{1,2,3} {4,5,6} {7,8,9, 10},

but each starting partition could have also been mentioned as an intermediate OUC! Finally,
one easily verifies that the loose consensus is a trivial one, because all objects are assigned to
a single group.

The above example demonstrates convincingly that the number of possible consensus parti-
tions can be too large even in relatively simple situations. Nevertheless, the consensus candi-
dates do not appear equally meaningful. It is of particular interest to derive consensus
partitions that reflect agreements between more than 50% of the alternatives. Such a majority
rule does not work for two classes in the example, because object 5 has a very ambiguous po-
sition (and the application of the majority rule is less straightforward for small and even values
of k). For three clusters, however, we can easily find the consensus partition:

P={1,2,3,4} {5,6} {7,8,9, 10}

The objects of each cluster in P; appear together in at least three competing partitions. This is
at the same time an intermediate consensus and we cannot be sure that there is always a unique
majority rule consensus. Furthermore, the 50% threshold is just one, although important rule,
and one may wish to set the threshold to be any percentage larger than 50. Another possibility
of selecting from the intermediate consensus paritions is to search for the median consensus
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partition (cf. Barthélemy & Monjardet 1981). This requires definition of a d dissimilarity
function measuring partition agreement. Then, a given partition P, is the median consensus of
the & partitions if the following condition is satisfied:

k k

D d(P,P)=min, ) d(P.P). (9.27)
i=1 i=1

Index c refers to any intermediate consensus partition. In a sense, the median consensus is on

the average the closest to the alternatives but again, we cannot be sure that there is a unique so-

lution for criterion 9.27.

Determining the strict consensus is an easy task, while obtaining the majority rule and me-
dian results is a more difficult (in fact, NP-hard) problem, especially for large numbers of ob-
jects. As a practical heuristics, we can apply an agglomerative, hierarchical consensus
generation procedure (Podani 1989a). The analysis starts from distance matrix D, » with dj
being the number of partitions in which objects j and k£ do not belong to the same class. The
global optimization strategy (Subsection 5.2.4) is a straightforward clustering procedure in
this case because the strictness of the consensus (i.e., within-cluster average distances) and the
isolation of objects (between-cluster average distances) are simultaneously measured. The hi-
erarchy obtained is a series of intermediate consensus partitions from which the consensus for
a particular number of groups is easy to determine. A conceptual advantage of the hierachical
consensus is its ability to show that several consensus results may exist for a given set of k al-
ternatives. Diday & Simon (1976) — without reference to consensus generation — have pro-
posed earlier to subject matrix D to complete linkage clustering.

The hierarchical consensus of non-hierarchical classifications is illustrated by an actual
example (Podani 1989a). A set of eighty vegetational sample plots from the dolomite rocks of
Sashegy, Budapest) were classified into three classes by six different clustering procedures.
The task is to find the consensus partition which, if superimposed on the map of the area, pro-
vides a more generally valid vegetation map than any starting classification (Fig. 9.15). Clus-
ters A, B and C may be identified on the map as the open Festuca-dominated community, the
Bromus grassland and the Sesleria-dominated closed grassland, respectively.

To fuzzy partitions, the median consensus easily applies (Podani 1990). The median con-
sensus of k fuzzy partitions is defined as a fuzzy partition with a minimum sum of squared
diffrences in membership weights from the others. Let u;j» denote the group membership
weight of object j for cluster /4 in partition 7. Furthermore, let u.j, be the weight in the consen-
sus partition sought (Fc¢). If the number of classes is p in every partition, then the objective is to
minimize the quantity

k m Y
SS0. =2 D X (uy —uy ). (9.28)
=1 j=1 h=l
It is found by exhaustive search, that is, the & classifications are fitted to one another in all the
possible permutations of clusters. Dummy classes are added when necessary to allow compar-
ison of partitions with unequal numbers of classes. There are p!*' different permutations, so
that the search is not operational for many classes or many partitions. The centroid method has
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Figure 9.15. Hierarchical consensus
of partitions: global optimization
clustering from six 3-cluster parti-
tions of 80 sample sites (top), and
the projection of three major groups
of the strict consensus (solid line)
and the nearly optimal 3-class ma-
jority rule consensus partition
(doted line) onto the map of the
study area (bottom).
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been proposed (Podani 1990) to find an approximation to the optimum when exhaustive
search is impractical.

Since the hard partitions are special cases of fuzzy classifications, a fuzzy classification as
a summary of hard partitions appears a very natural choice. Hard partitions, as their name sug-
gests, are not flexible enough and cannot be modified to show slight details in the consensus
object. Often, they require too many groups in order to be unique (recall the case of object 5 in
the profile 9.26). On the other hand, a fuzzy synthesis of hard clusters may reflect minor de-
tails because the cluster membership weights are measured on a continuous scale.

The exhaustive search for a fuzzy consensus of partitions in profile 9.26 provides the fol-
lowing cluster membership weights to two classes (the matrix is transposed):

1.01.01.00.750.50.250.750.00.0 0.0
0.00.00.00.250.50.750.251.01.01.0

9.4.2 Consensus trees

The summarization of alternative results into a consensus is perhaps the most challenging task
in contemporary molecular systematics. Regardless whether dendrograms or cladograms are
used, only the topological structure of the tree is considered in most cases, whereas the hierar-
chical levels and branch lengths are disregarded (with noted examples, see below). Thus, it is
almost always immaterial whether the OUCs are dendrograms or cladograms. The consensus
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trees represent a compromise in a sense that the strong condition of allowing bifurcations only
has to be released, except in trivial situations. This is best demonstrated by the strict consensus
trees (Sokal & Rohlf 1981b, Swofford 1991) which —in agreement with the strict consensus
partitions — are constrained to show those clusters only that appear in all competing trees. In
other words, if a particular group of objects appears in the consensus tree, then they were al-
ways classified together in the input trees. Therefore, the interpretation of a strict consensus
tree is fairly easy.

Let us examine trees a, b and ¢ of Fig. 9.16, summarized into the strict consensus tree d.
The cluster {A, B, C} is the only one that occurs in all the three dendrograms, illustrating a
disadvantage of most strict trees: the proliferation of politomies. In extreme cases, as for the
cladograms of Fig. 6.18, all branches of the strict consensus tree originate directly from the
root (= ‘bush’ or ‘star tree’), which is not a very attractive property. In fact, the fewer the
politomies in the consensus tree, the more similar are the input trees. This is measured by a
consensus index discussed in 9.4.2.1.

The semi-strict or combinational consensus (Bremer 1990, Swofford 1991, Quicke 1993)
implies some more relaxed conditions. The fundamental requirement here is that no clusters
of the consensus tree should conflict with the starting trees. Since the presence of {A, B, C} in
tree ¢ (Fig. 9.16) does not contradict with group {A, B}, the consensus tree will be dichoto-
mous for these three objects (Fig. 9.16¢). If all input trees are fully dichotomic, then the strict
and the semi-strict consensus trees will be identical. The majority rule consensus tree

a b c

Omom<waouwd Om <L wnonao <o Owwanonao

Figure 9.16. Consensus I_J

trees. The summary of al-

ternative trees a-c into the ‘
strict consensus d, the

semistrict consensus e, the
majority rule consensus

(>50%) (f), the Adams g h
consensus (g) and the MO <WwOouw o <O OWwWouwowo
"durchschnitt"  consensus

(h). Compare the success I_-_I

of the consensus trees in

finding the compromise

tree for dendrograms a-c!
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(Margush & McMorris 1981) tolerates even more discrepancies among the trees. The condi-
tion of the appearance of a consensus cluster is its presence in at least p per cent (p>50%) of
the input trees. Consequently, the majority rule consensus for the above example will be com-
pletely bifurcating (Fig. 9.16f): its classes ({BC}, {ABC}, {ABCF}, {DE}, {ABCDEF} and
{G}) are recognized in at least two of the three starting dendrograms. The value of p is se-
lected by the investigator, and for many trees it is useful to raise the tolerance level well over
50%. It is easy to verify that for two trees the strict and the majority rule consensus trees are
identical. As a further possibility, the median consensus tree (Barthélemy & Monjardet 1981,
Barthélemy & McMorris 1986) also requires attention, Its derivation is based on the same
grounds as the median consensus partition (9.27) provided that we find an appropriate func-
tion for the pairwise comparison of trees. If this function is the partition metric (Equation
9.12), then the 50% majority rule tree is at the same time a median tree (Barthélemy &
McMorris 1986), which is not necessarily bifurcating. If one insists to find a completely di-
chotomous median tree, the suggestions by Penny et al. (1982) should be considered to get a
‘median binary tree‘ (Swofford 1991).

It is an interesting historical fact that the first proposition for a consensus tree differs from
all of the above-mentioned, mathematically elegant procedures. Adams (1972) suggested to
examine how the large groups are subdivided into smaller and smaller clusters when we pro-
ceed from the root towards the terminal branches of the tree. First, we generate the partitions
determined by the first division (i.e., at the root) and find their strict consensus partition. For
dendrograms 9.16a-c, these partitions are {ABCDE} {FG} and {ABCDEF} {G} twice. From
these, we obtain the strict consensus partition {ABCDE} {F} {G}, so the consensus tree starts
with a trifurcation. Afterwards, the cluster {ABCDE} is evaluated in the same way, with a re-
sult shown in Fig. 9.16g. The most common criticism against the Adams tree is that it may de-
pict clusters that did not appear in any of the starting trees (Fig. 9.17).

There is a method that applies exclusively to dendrograms, the °durchschnitt’
(cross-section) consensus (Neumann 1983, Smith & Phipps 1984). The procedure relies
heavily upon the ordering of hierarchical levels. From the root towards the leaves, partitions
are defined by ‘cutting’ the tree, and then these partitions are summarized into a consensus at
each cut level. The clusters of this consensus partition form the branching pattem of the con-
sensus tree. The procedure may continue this way until the trivial partition of objects into m
classes is obtained (Fig. 9.16h). A gain, the actual hierarchical levels do not matter, only their

c Figure 9.17. A major
‘problem’ with the Ad-
ams consensus tree (c¢)
is that some of its clus-
ters may be absent from
all competing trees
(a-b). Nevertheless, this
tree expresses faithfully
the relative neighbor re-
lationships of most ob-
ject pairs
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ordering is considered. The durschnitt consensus can also have clusters that did not appear in
the input trees at all.

Finally, I mention the pruning and grafting method proposed by Finden & Gordon (1985).
Its major difference from all previous consensus tree generation methods is that some of the
objects may not appear in the final tree. The method aims to remove outlier or conflicting
branches in a stepwise manner such that the remanining truncated tree agrees with all input
trees. Of course, several such reduced trees may exist for a given problem, and the one with
the most numerous objects (‘largest common pruned tree®) is to be retained as the final con-
sensus. The method is extremely useful if a few objects with highly unstable positions are re-
sponsible only for the between-tree differences. The problem is that we do not know exact and
fast algorithms to identify the largest common pruned tree; enumeration of all possibilities for
large m is not feasible for theoretical resons (cf. NP-completeness).

9.4.2.1. Consensus indices. When the overall agreement of many trees is measured by a single
number, rather than a tree, we use a consensus index (Rohlf 1982). Indeed, these formulae ex-
press similarity between 0 and 1 and could have been treated for the case k£ = 2 in the subsec-
tion on pairwise dendrogram comparisons (9.2.3). However, these are most appropriate for
many alterative trees. A good summary, in addition to Rohlf’s review cited above, is in
Swofford (1991) while the following discussion is confined to a few of them.

The simplest of all isthe consensus fork index proposed by Colless (1980). It measures the
deviation of the consensus tree from the fully binary one. The index is the number of
non-trivial® classes divided by m-2, the maximum number of non-trivial classes. For
dendrogram 9.16d, the index amounts to 0.2 (because only one class out of the five possible
ones appears). Its value is 0.4 for tree 9.16g and 1 for tree 9.16f. The Mickevich-index (1980)
assigns a weight to each consensus class, according to its size, thus representing an extension
of the Colless-index. If cluster i has n; objects, then its importance is N; = min {n;—1, m—n;}.
The sum of these importance values divided by the possible maximum of the index provides
the measure sought. For the three dendrograms mentioned above, we obtain the values of
0.222,0.444 and 0.888, respectively. Finally, Schuh & Farris (1981) offer a completely differ-
ent weighting system: compute the number of object pairs for each cluster, that is N; = n;(n; —
1)/2, and add them (“levels sum’). For the example trees of Fig. 9.16 d, gand fwe get 3,26 and
13. The levels sum could be divided by the maximum to have a unit range, A problem with this
ranging by the maximum for all indices is that the maximum depends greatly on the shape of
the trees (larger for chained dendrograms than for balanced trees).

9.4.3 Consensus ordinations

If there are k alternative ordinations of the same m objects, then their average6 (or, ina sense,
their consensus) ordination may also be interesting for the investigator. The formulation of
our task appears relatively easy because it seems sufficient to adapt the principle of median

5 Aclass is trivial if it contains only one or all objects.
6  An important field of application of consensus ordination is in morphometric analysis, already mentioned in
Subsection 7.6.2 under the term ‘superposition methods’.
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consensus: the ordination sought is a point configuration whose sum of squared differences
from all the others is the minimum (Formula 9.13). The objective is thus to optimize the fit of
ordination k+1 to the & alternatives, achieved by the generalized Procrustes method suggested
by Gower (1975). As many other multivariate optimization techniques, this method also re-
quires several iterations to find the final solution. An obvious exception is the case k£ =2 be-
cause the consensus coordinates are derived simply by averaging after the two ordinations are
fitted, and this operation requires a single comparison (as described on page 329).

In the first step of generalized Procrustes analysis, each ordination is centred and normal-
ized to unit sum of squares. Without doing so the concept of an average ordination would not
work. If X; denotes ordination 7, and Y refers to the consensus configuration we are looking
for, then each X; configuration must be rotated to obtain its best fit to Y, providing the result
inY;:

Y =pXH;. 9.29)

In this formula, p; is a scale parameter and H; is the rotation matrix obtained by minimizing
the following function:

RES =3 w[(Y-Y) (Y-Y))] (9.30)

(RES denotes the residual sum of squares). The rotations are performed such that the total sum
of squares of the original £ ordinations does not change:

SS0 =) (X, X)=2, tr(Y,Y)=2, p’tr X', X)). (9.31)
The consens;.ls ordination is tflus the arithmetié average of the respective coordinates:
Y=1/kDY, (9.32)

So far so good, but how to fit each ordination to the consensus when the consensus is not yet
known? To get out of the vicious circle, we have to iterate. First, X is fitted to X and then
X3 is fitted to the average of X3 and X;. We proceed in similar way until ordination X is fit-
ted to the average of all other ordinations. This first cycle yields the starting estimate of the
consensus ordination. Usually, further cycles are necessary to improve this configuration; the
iterations are stopped when the change of RES between two subsequent cycles becomes negli-
gible. Each step involves rotations and an optional, though strongly recommended rescaling
of coordinates. The directionality of the final consensus ordination is arbitrary. It is suggested
therefore to perform a PCA from the final Y, and then fit each starting ordination to this PCA
result again.

The total sum of squares (SSQ) has two components: the residual sum of squares (RES)
and the consensus sum of squares (SSO—RES). The worse the overall fit of ordinations, the
higher is the value of RES. A useful interpretational vehicle is the percentage contribution of
each object and each ordination to the value of RES; the percentages identify outlier objects as
well as ordinations that differ most remarkably from the average configuration.

As an example, let us see how the effect of plot size can be eliminated from an ordination
of vegetation data. The study design was already mentioned in Subsection 9.4.1, but in this
case we use only six sizes (from 1.5 x 1.5 m?to 4 x 4 mz, with a side length increment of 0.5
m) for the same 80 sample sites. The ordination method is PCoA. The overall fit of the six
PCoA results for the first two dimensions is obtained by the generalized Procrustes method.
Since the scatter diagram would be too complicated and difficult to view if all the points were
shown, the ordination outlines only the positions of a given site when quadrat size was
changed. The consensus positions are not illustrated either; these are near the centroid if each
shape. Figure 9.18 demonstrates that changing the quadrat size did not excert too much influ-
ence upon the ordination as a whole. The arched arrangement of quadrats along the back-



348 Chapter 9

Figure 9.18. General-
ized Procrustes analy-
sis. The six ordina-
tions to be compared
were derived from
different plot sizes for
the same set of 80
sites. Each irregular
shape represents the
outline of positions
for the same site. The
individual points are
not shown, so that the
consensus ordination
is only implicitly
present in the dia-
gram.

ground gradient from the open to the closed community type is essentially unaffected by
quadrat size. This is now the right place to explain why the smallest two sizes (0.5 x 0.5 and 1
x 1 m”) were removed from the analysis: they were too small to provide sufficient informa-
tion on the species composition of the site and therefore the inclusion of their PCoA ordina-
tions completely confounded the consensus ordination.

9.5 Comparison of results of the different type

9.5.1 Numerical comparisons

OUC:s of the different type can only be compared numerically if all of them are brought into
the same mathematical form. This universal standard is a symmetric matrix, sammarizing the
relationships of the m objects in all possible pairs. Two matrices can then be contrasted by the
correlation coefficient (Formula 9.1), whereas Euclidean distance and related functions are
useful only if the values of the two matrices are normalized to the same scale. Rank correlation
is a possibility if we do not worry about the actual differences between the values in the matri-
ces. An example for this approach was already presented in Subsection 5.5.1: the cophenetic
correlation measures the distortion implied by the ultrametric tree in comparison to the origi-
nal dissimilarities from which the dendrogram was obtained. Analogously, the correlation be-
tween the distances in an additive tree and the starting distances may also be calculated to
measure the deviation of within-graph distances from the original distances. Since partitions
and ordinations may also be written in form of m \m matrices, the correlation formula applies
to a wide variety of combinations of OUC types.

9.5.2 Graphical comparisons

When all results are expressed in matrix form, the coordinate system-based approach exem-
plified already in Subsection 9.2.1 provides a straightforward graphical tool. The simulta-
neous display of different results appears even more frequently in publications. The basis is
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usually a two-dimensional ordination upon which the other result is superimposed (as done al-
ready in Figures 7.2 and 8.10b). The projection of one OUC over the other eliminates potental
disadvantages of either OUC and emphasizes their agreements, as illustrated by the following
examples. Graphical evaluation and the superposition of results are warmly recommended in
all fields of multivariate data exploration.

First, the ‘matrix plot’ is used to depict the relationships between a distance matrix and a
dendrogram derived from it. Let us choose the dendrogram in Fig. 8.8c, representing the
UPGMA clustering of points of Figure 4.3c. The cophenetic correlation (0.662) was already
calculated in Subsection 5.5.1. Now, we examine graphically what is behind this correlation.
In Fig. 9.19a, the horizontal axis measures the levels in the dendrogram, whereas the distances
are measured on the vertical axis. Since the maximum number of different levels in a
dendrogram is m—1, the points of the scattergram are arranged in ‘columns’. The triangular
outline of the point scatter illustrates pretty well that each hierarchial level represents a wide
range of original distances, and this range may be especially wide for the last fusions even if
the cophenetic correlation is high.

As a confirmation of non-hierachical classifications, the groups may be portrayed by out-
lines drawn around the member objects in an ordination plane (usually in dimensions 1 and
2). We can do it by eye, but a more elegant solution is to find the minimum convex hull (or
‘classification polygon’). This shape includes all points in a group without ‘hollows’ (i.e., the
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Figure 9.19. Graphical comparison (a: dendrogram versus distance matrix) and simultaneous illustra-
tion (b: ordination and a partition with convex hulls, ¢: ordination and a classification with probability
ellipses, d: ordination and minimum spanning tree) of different types of results
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interior angles do not exceed 180°) such that its area is the minimum. The size of these poly-
gons and the lack of overlaps in between offer a visual basis for evaluating the goodness of a
classification. If the overlaps are extensive, the partition is in doubt. As an example, we exam-
ine the three-species classification of the /ris data drawn on a PCA ordination of the 150 indi-
viduals along the first two axes (Figure 9.19b). The diagram is no more than a mere
confirmation of the well-established result that one species separates well whereas the other
two are not distinct on the basis of the four flower characters included.

Another possibility of contrasting partitions and two-dimensional ordinations is the dis-
play of ‘ellipses of equal concentration (Mardia et al. 1979, Lagonegro & Feoli 1985).The el-
lipse corresponds to an area in the ordination space which contains 100(1-a) percent of the
members of the given group (o is the probability level chosen). This is only true, however, if
the original data follow multivariate normality and sampling is random. These criteria are
rarely met in biological investigations. Nevertheless, it is demonstrative to display the proba-
bility ellipses of the three [ris species at the probability level of 95% (Fig. 9.19¢). In this dia-
gram, the relative overlap between ellipses is similar to the classification polygons.

As mentioned already in Subsection 5.4.3, a good visual test of a two-dimensional ordina-
tion is offered by minimum spanning trees. The closeness of two objects in the ordination
plane may be misleading, because the two dimensions portrayed do not represent faithfully
enough the interpoint distances. If the edges (links) of the graph cross one another, or there is
a long path between two objects that are not far apart in the diagram, then further dimensions
should be considered in the ordination display. However, a well-stretched graph without such
phenomena is an indicator that the two dimensions are largely sufficient to represent the
interpoint distances. This is what we see in the PCoA ordination of European cities (Fig.
7.18): the superimposed minimum spanning tree (Fig. 9.19d) confirms that the 84% share
from the total variance is high enough to accept the first two dimensions.

9.6 Literature overview

The literature of the comparison methodology is more extensive than expected and the recent
developments in the area make the subject almost impenetrable for an average, yet statisti-
cally-minded biologist. This is true of theory only, because the applications to biological prob-
lems are unbalanced and often very limited. Data exploration in community ecology, for
example, does not exhaust the possibilities in comparison to taxonomy and evolutionary biol-
ogy. Noted exceptions are the books by Digby & Kempton (1987) and Orldci (1978). The first
book discusses Procrustes methods in detail, whereas the second one devotes much space to
the comparison of partitions via information theoretical statistics. The importance of compari-
sons is clearly recognized by most taxonomic and cladstic monographs, such as Sneath &
Sokal (1973). In particular, the review by Rohlf & Sokal (1981a) on the different types and logi-
cal pathways of numerical taxonomic comparsions is recommended. By looking at the most re-
cent literature, we find that the search for a consensus cladogram (e.g., Swofford 1991) is the
most common preoccupation of evolutionary biologists. We already know why: the number of
equally parsimonous optimal cladograms can be exceedingly high for large numbers of taxa.

The need of comparison often arises in a methodological context: of the several alternative
methods available one wishes to select the one best satisfying certain predefined basic as-
sumptions. This possibility was notyet mentioned, although there are several examples for this
approach, even in ecology (Fasham 1977, Gauch et al. 1977, 1981 etc.). Such studies raise
questions like: which ordination procedure is less prone to the arch effect? which method is
best suited to recover an assumed (or simulated) background gradient? and so on. Here, the
objective is to examine how certain external assumptions are met be the method, rather than to
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Table 9.2. Comparison of results in different program packages.

NT-SYS SYN-TAX PHYLIP PAUP
Matrix comparisons ++ ++
Partitions ++
Dendrograms, trees ++ ++
Procrustes methods ++
Consensus partitions ++
Consensus trees ++ ++ ++ ++
Significance of comparisons ++ 4
Superposition of different reults ++ ++

compare alternative results for the same data. The comparative evaluation of the perfomrance
of methods is a different matter.

Although some important sources of informatioin were already cited in the present chapter,
it is worth mentioning some journals again whose knowledge is imperative if one wishes to be
up to date in a given discipline. Several papers of the Journal of Classification, especially the
special issue of 3(2) are devoted to the problem of comparing classifications, and understand-
ing of these reviews requires advanced knowledge of discrete mathematics. Perhaps, Rohlf
(1974, 1982) and Day (1988) are more suitable as a starting reference. The evolutionary impli-
cations of tree comparisons are discussed by Penny et al. (1982, 1991) and, more recently, by
Page and Holmes (1998), and almost all issues of Systematic Biology offer useful reading for
the interested biologist. For ordinations, our choice is more limited.

Regarding the significance of comparisons, the theory and applications of the Mantel test
are pioneering and still dominant. Manly (1991) devotes a full chapter to this subject, with am-
ple examples from different biological disciplines. Typical fields of application of the Mantel test
are the comparison of phenotypic and genotypic information (Douglas & Endler 1982), com-
parison of genetic and anthropometric distances (Dietz 1983, whose study relies also on rank
correlations), evaluation of point patterns (Harvey et al. 1988) and the elucidation of small
scale relationships of species to the environment (Burgman 1987). On the significance of
dendrogram and cladogram comparisons, the best reading is Lapointe & Legendre
(1990,1991, 1992, but see comments in Podani 2000).

9.6.1 Computer programs

Most commercially available packages quite simply ignore the comparative evaluation of
results. There is no excuse for that even though in some cases very special methods are re-
quired. Table 9.2 provides a brief list of some software that include routines on pairwise com-
parisons, consensus, and significance tests.

9.7 Imaginary dialogue

Q: First of all, let me assure you that — after working through this chapter — most of my scepti-
cism is over. When reading the starting pages I did not understand why is this topic so impor-
tant for you. Later, at least some of the examples were convincing enough for me to see that
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multivariate data exploration, in most of the cases, does not conclude by generating the re-
sults, the OUCs, no matter how attractive they appear for the superficial investigator.

A: Thanks for the recognition! As I mentioned in the literature review, the importance of the
topic is largely overlooked in several areas. I tried to resolve this by a review (Podani 1989d)
at least in the field of vegetation science, but I have collected no more than 8-10 references
since then! Maybe, my efforts will receive more attention later, but it is also possible than sci-
entific fashions will divert people from this topic further apart...

Q: If I understood well, then the Procrustes method is suitable to ordinations of equal
dimensionality only. What shall I do if I am excited to know how an ordination is changed
along with increasing dimensionality, i.e., when more and more axes are considered? It is
also reasonable to ask how many dimensions of a PCoA ordination fit best to a
two-dimensional nonmetric ordination.

A: Surely, the Procrustes method does not work in these cases. Do not worry, however, be-
cause by the good old matrix comparisons you will be able to find the answer. The 7 \m dis-
tance matrices representing the ordinations may be calculated based on as many dimensions
as you wish.

Q: I would not be surprised to hear about some spatial series analysis associated with these
comparisons...

A: There was already one example, do not you remember? In finding the majority rule con-
sensus, the criterion may be changed from 50 to 100%, thus generating a series of consensus
classifications (or other types of results). There is another method that I did not mention yet.
Stinebrickner (1984) proposed a family of consensus methods characterized by a modifiable s
parameter. If s = 1, then we have the strict consensus, while systematic decreases of this value
produce more and more clusters in the consensus tree. Of the dendrograms in Fig. 9.16, the
Adams tree (g) is identical to the Stinebrickner consensus for s = 0.5.

Q: Ifthere is a proposal to utilize the ultrametic property of the dendrograms in their compar -
ison, then is there any possibility to rely upon the four-point metric in the comparsion of addi-
tive trees?

A: Yes, the ‘quartet metric’ (see Steel & Penny 1993, and references therein) implies this for
unrooted trees. For each possible quartet of objects (there are “ m choose & of them), we ex-
amine the two trees being compared. The number of quartets for which the two trees have dif-
ferent topology provides a metric distance of trees.

Q: It seems fairly obvious from what you are saying that consensus trees are of little interest
outside cladistics. But why?

A: Consensus trees are inevitable if the complete hierarchy is of primary concern. Since the
evolutionary pathways of a given group of organisms are interesting to the finest detail,
cladograms occur most commonly in consensus tree-seeking. In a vegetation study, however,
even though full dendrograms are obtained in the first phase of the study, the branching pat-
tern of the tree near the leaves is in fact irrelevant. The partitions that can be derived from the
dendrograms at particular high hierarchical levels are more interesting, as illustrated in Figure
9.15. This is so in may other fields of science where the construction of trees is only a first step
in a long methodological sequence.
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Q: Is not it potentially dangerous that there may be more consensus methods than the number
of trees we are analyzing? May not it be true that the proliferation of methods will
overcomplicate our job, leading to an overproduction of results?

A: This is a proper note, not entirely without irony! Yes, there are many conceivable consen-
sus results, and I can tell you that I did not even mention the majority of consensus methods in
this book. There have been long-standing debates over the utility of the consensus approach in
biology. I think the problem cannot be circumvented in data exploration, because the number
of methods themselves is still steadily increasing. Of course, it is true that a consensus tree
could be more appropriate if based on more properties, rather than on a single one (let me re-
mind you of my views on dendrogram comparisons!). Such a ‘multivariate consensus’ may be
of more general validity than the consensus results we already know.

Q: I am not sure that the consensus should always be searched for in the manner you de-

scribed. For example, if the alternative trees are based on evaluations of separate subsets of
data for the same taxa, then why do not we summarize this information at the level of data,

thus saving hours of work with the consensus generator routine?

A: You should consult some issues of TREE (Trends in Ecology & Evolution) in the library
nearest to you. There was a debate quite recently in this journal about the possibilities of com-
bining information in phylogenetic reconstruction (vol. 1996, e.g., Ballard 1996). One ap-
proach suggests what you have just said: synthesize all possible data first and use this
combined set for the generation of the final tree. Proponents of the other approach maintain
that it is always interesting to see the alternative evolutionary hypotheses generated by differ-
ent sets of data, and then to find a compromise among them. Statistical tests may be used to
evaluate the null hypothesis that the trees represent the same evolutionary relationships, i.e.,
their differences are within reasonable limits. If this is true, then a piori pooling of data was
right. If the null hypothesis is rejected, then the ‘many trees’ approach is the only one capable
of revealing the reasons behind the significant differences among trees.

Q: If pairwise dissimilarities can be tested for significance, then we should also be able to
evaluate a consensus result along similar lines, I think.

A: A good point again! I can give you an example which answers your question at least par-
tially. Felsenstein (1985) proposed using bootstrap trees in cladistics, each tree being based
on a random choice of variables. When a sufficient number of trees are obtained, a majority
rule consensus tree is generated. In this tree, each group is examined to see how many percent
of the bootstrap trees contained that group. Some clades may have appeared in all bootstrap
cladograms, these are the most ‘significant’ groups in cladistic analysis. Other groups may
have lower percentages, but never smaller than 50%. The lower the percentage, the less sup-
ported is the given subtree by the data. The percentages are indicated by small numbers on
each branch of the consensus tree. Of the many examples for this approach in molecular sys-
tematics, I have chosen Krajewski & Dickerman (1990) and Cracraft & Helm-Bychowski
(1991) randomly. The recent issues of the journal, Molecular Phylogenetics and Evolution
provide a large number of case studies in which bootstrapping plays a central role. However,
there is no unanimous enthusiasm about bootstrapping and subsequent consensus generation
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among phylogeneticists. A common criticism is that estimates regarding the significance of
clades are too conservative (Hillis & Bull 1993).



