
8
Ma trix re ar range ment

(How to do with out math e mat i cal con structs?)

The meth ods dis cussed thus far con vert bi o log i cal in for ma tion into math e mat i cal ob jects,
such as dendrograms, cladograms, ter nary plots, unrooted trees, com po nents, fac tors, and so
on, used in or der to ex press the es sence of the data in com pre hen sive form. Ad mit tedly, the in -
ter pre ta tion and un der stand ing of re sults con veyed by these ‘ar ti fi cial’ con structs re quire ex -
pe ri ence and some ba sic knowl edge of the ory. Our life would be eas ier if the fi nal re sults were 
a di rect and more ob vi ous il lus tra tion of data struc ture for ev ery one. To achieve this goal, let
us for get about these math e mat i cal ob jects by forc ing the end re sult to be of the same type as
the start ing data! For such an ap proach, the data ma tri ces them selves should de serve the most
at ten tion. Their rows and col umns can be re ar ranged in such a way that mere in spec tion of the
‘new’ ma trix re veals the hid den struc ture in the data. The re ar range ment of dis tance or sim i -
lar ity ma tri ces serves sim i lar pur poses. This chap ter will treat pro ce dures that are suit able to
such in tu itively mean ing ful re or der ing, with or with out do ing pre lim i nary anal y ses by other
meth ods known from the pre vi ous chap ters. Of course, the de scrip tion of the al go rith mic de -
tails re quires some math e mat ics even though the fi nal re sults speak for them selves. Logically, 
this chap ter could have been pre sented much ear lier in this book, but I think that el e men tary
knowl edge of clas si fi ca tion and or di na tion the ory is very help ful at sev eral points. First, re or -
der ing of vari ables in a data ma trix will be dis cussed and then fol low pro ce dures  which re ar -
range both the col umns and the rows, im plic itly achiev ing or di na tion or clas si fi ca tion
ob jec tives. 

8.1 The unequal importance of variables: character ranking

The se quence of vari ables in data ma tri ces pre pared by hand is usu ally ac ci den tal or it fol lows
some prac ti cal rule, such as the al pha betic or der of names. This is not crit i cal at all for
multivariate anal y sis, be cause the re sults should al ways be in de pend ent of the in put or der of
data (if this re quire ment is not met, then there are se ri ous prob lems with the method it self or
with the soft ware, see Podani 1997c). Nev er the less, one may want to ob tain an ob jec tive or der 
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of vari ables so as to re flect their im por tance in de ter min ing the struc ture of data. Such a list
should start with vari ables that dom i nate the data struc ture, fol lowed by the less im por tant
ones and the list should be con cluded by vari ables whose re moval from the data is al most un -
no tice able. The key stone in this ap proach is in fact the def i ni tion of im por tance. As we shall
see be low, there are sev eral, more or less equally mean ing ful def i ni tions. For tu nately enough,
im por tance can be quan ti fied in ob jec tive man ner based on a wide se lec tion of for mu lae. Fur -
ther more, rank ing vari ables also de pends on whether it is per formed be fore more so phis ti -
cated anal y ses (a pri ori rank ing) or its pur pose is sim ply to eval u ate the im por tance of
char ac ters in con trib ut ing to the out come of a par tic u lar clas si fi ca tion or or di na tion (a pos te ri -
ori rank ing). The lat ter pos si bil ity is closely re lated to the topic of eval u at ing fi nal re sults,
touched upon al ready in Sub sec tion 5.5.3 and to be dis cussed in more de tail in Chap ter 9. 

In ad di tion to the re ar range ment of data, there are fur ther ob jec tives of char ac ter rank ing.
For ex am ple, Dale et al. (1986) men tion the fol low ing:

 The se lec tion of most im por tant vari ables to be re tained in sub se quent anal y ses be -
cause the pro gram can not han dle all vari ables si mul ta neously. This prob lem is no lon -
ger acute if we con sider the rap idly in creas ing per for mance of mi cro com put ers and
com puter pro gram pack ages. 

 Sim pli fi ca tion of com plex, multivariate sit u a tions into the univariate case (e.g., the
discriminant func tions al low a multivariate sep a ra tion of groups, whereas the di cho t -
o mous iden ti fi ca tion keys use one cri te rion vari able in each step). 

 The iden ti fi ca tion of ir rel e vant vari ables that do not re flect bi o log i cal pat tern in any
mean ing ful way. These vari ables usu ally pro duce only back ground noise, so that their 
omis sion from the data may im prove the fi nal re sults of data anal y sis. 

8.1.1 Rank ing vari ables a pri ori

The ob jec tive of a pri ori rank ing is to or der the vari ables ac cord ing to their in di vid ual con tri -
bu tions to the en tire data struc ture. The mea sure ment of this con tri bu tion de pends pri mar ily
on the scale on which the orig i nal data are ex pressed. For in ter val-scale and ra tio-scale vari -
ables, the covariance-, cor re la tion- or some times the cross-products ma tri ces (Equa tions
3.68-70) serve as a ba sis for rank ing.  For bi nary (pres ence/ab sence) data, there are ad di tional
pos si bil i ties, such as the in for ma tion the ory mea sures and the  2-sta tis tic. These  lat ter two
pro vide a so lu tion for the nom i nal data type as well. There is an other choice that the user must
make in ad vance: this is be tween the two fun da men tal strat e gies of rank ing: a) anal y sis with
cal cu lat ing and re mov ing the re sid u als in each step, and b) sim ple rank ing with out con sid er -
ing re sid u als. 

Rank ing by re sid u als. This method re quires sev eral it er a tion steps. First, the most im por tant
vari able is cho sen and then its ef fect is re moved from the data (Orlóci 1973, 1978). As a re sult, 
the re sid ual vari a tion in the re main ing ma trix is lin early in de pend ent from the firstly se lected
vari able.  Af ter elim i nat ing the ef fect of the first vari able, the sec ond most im por tant vari able
is cho sen, its ef fect re moved, and so on. The it er a tions stop when the re sid ual vari a tion be -
comes zero. This is achieved in ev i ta bly for the pen ul ti mate vari able, but rank ing may hap pen
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to be com plete ear lier when 100% of the vari a tion in the data struc ture is ex plained by fewer
than n-2 vari ables. In such cases, the re main ing vari ables can not be ranked. 

This tech nique is shown first on the ex am ple of in ter val-scale vari ables, us ing the 
 S nxn jks  ma trix of their cross prod ucts, covariances or cor re la tions. As we shall see, the ba -

sis of rank ing is the con tri bu tion to the to tal sum of squares in the raw, cen tered or stan dard -
ized data, re spec tively. The main steps are as fol lows: 

1. The first rank is r = 1. Cal cu late the quan tity, tr{S}, which is in fact the to tal sum of
squares (for cross prod ucts) or the to tal vari ance (for covariance or cor re la tion) in the
data. 

2. De ter mine for each col umn j of S the sum of squared el e ments and di vide it by sjj.
The first rank is given to the vari able with the high est score. Formally, we max i mize the 
quan tity given by 

g s sj
k

n

jk jj



1

2  .                                                                                                      (8.1)

Let this vari able be de noted by h in the forth com ing steps. Its per cent age con tri bu tion to 
the to tal vari a tion is ob tained as 100 gh / tr{S} .

3. The ef fect of vari able h is now re moved from S. Any el e ment of the ma trix, in clud ing 
the di ag o nal val ues, is re cal cu lated ac cord ing to 

s s
s s

sjk jk
jh kh

hh

   .                                                                                                       (8.2)

As a re sult of these op er a tions, all val ues will be zero in row and col umn h of S. The de -
crease of all other el e ments will be pro por tional to the cor re la tion (covariance,
cross-product) of the given vari able with vari able h. 

4. Set r = r+1. If there are pos i tive val ues in S, the anal y sis goes back to step 2. Oth er -
wise, the to tal sum of squares (vari ance) is ex hausted by the vari ables al ready ranked
and the anal y sis ter mi nates.

The above rank ing pro ce dure de ter mines the min i mum num ber of orig i nal vari ables nec -
es sary to ex plain the to tal vari a tion in the data. A geo met ric il lus tra tion may fa cil i tate a
deeper un der stand ing of the method. The vari ables are to be con ceived as points in an m-di -
men sional space. Now, sjj is the squared length of the vec tor di rected to point j (sca lar prod uct 
of the vec tor, see Ap pen dix C), and tr{S} is the sum of all squared vec tors (sum of squares).
Each vari able is now viewed as if the vec tor per tain ing to it were an axis. There ex ists a
hyperplane per pen dic u lar to each axis, to which the vec tors of all vari ables can be pro jected.
The dif fer ences be tween the orig i nal and pro jected vec tor lengths ap pear in the nu mer a tor of
For mula 8.1. The most im por tant vari able is thus the one pro vid ing the max i mum de crease of
sum of squares achieved by this pro jec tion, in clud ing the vari able’s own pro jec tion to zero
length. This is shown in Fig ure 8.1a for the case of  m = n = 2. Fig ure 8.1b dem on strates that
one of two fully (ac tu ally neg a tively) cor re lated vari ables is ‘su per flu ous’ (i.e., the cor re -
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spond ing vec tors are col lin ear). When ever the vari ables are or thogo nal to one an other – as op -
posed to the pre vi ous sit u a tion – none of them ex plains any vari ance per tain ing to the other
(Fig. 8.1c). Af ter iden ti fy ing the most im por tant vari able, the dimensionality of the sys tem de -
creases by one, and a new vari able is searched for in the new subspace.

To sum up: the es sence of the method is the de com po si tion of the to tal sum of squares into
or thogo nal con stit u ents. How ever, this op er a tion does not in tro duce new artifical con structs
(such as com po nents or fac tors) so that the cu mu la tive per cent age ac counted for by the first p
or dered vari ables is usu ally much lower than the cu mu la tive per cent age of the first p prin ci pal
com po nents ex tracted from the same data. These per cent ages would be equal only if the orig i -
nal vari ables were co in ci dent with the com po nents, a sit u a tion al most im pos si ble in prac tice.
The ad van tage of us ing the orig i nal vari ables over com po nents is that they are di rectly in ter -
pret able for the bi ol o gist. 

As an ex am ple, let us ex am ine the vari ables of Ta ble A1 based on the three cri te ria in tro -
duced above, The re sults are sum ma rized in Ta ble 8.1. For cross prod ucts, eight vari ables
were nec es sary to reach 100%, for the other two cri te ria seven were suf fi cient be cause the
vari ables were cen tered. The rank of the start ing ma trix (Ap pen dix C) strongly in flu ences the
num ber of vari ables that can be ranked1. The re sult is a bit sur pris ing for the cross prod ucts
ma trix (Ta ble 8.1A) be cause the firstly se lected vari able has a rel a tively small sum of squares
(18.0), whereas oth ers have much higher (e.g., BRO ERE has 3020.0 and SES SAD has
4916.0). This dem on strates el e gantly that it is the directionality rep re sented by the spe cies
vec tor in the mul ti di men sional space that mat ters, rather than the ab so lute vari a tion. The axis
co in ci dent with CAR HUM ac counts for 41.9% of the to tal sum of squares; an amount higher
than for any other spe cies. Of course, for the covariance cri te rion the rank or der is greatly dif -
fer ent (Ta ble 8.1B), show ing the ef fect of data cen tring. Here, spe cies with high vari ance
dom i nate, whereas spe cies with low vari ance, such as CAR HUM do not even ap pear in the
rank or der. As a re sult of stan dard iza tion (Ta ble 8.1C) – as ex pected – the rank or der is
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Fig ure 8.1. Rank ing by re sid u als: a geo met ric il lus tra tion of a sin gle an a lyt i cal step. In all cases, vari -
able 1 is se lected. Then, a: the share of vari able 2 lin early in de pend ent of the first vari able is pro por -
tional to the length of the vec tor as pro jected to the dashed line (2’), b: vari able 2 has no in de pend ent
con tri bu tion to the sum of squares, and c: the two vec tors are or thogo nal to each other.

1 The two meanings of the term ‘rank’ should not be confused



changed again. A typ i cal fea ture of cor re la tion-based rank or ders is that the cu mu la tive per -
cent ages (last col umn) in crease much more slowly than in the pre vi ous two or der ings.

One may ask the ques tion: un der what cir cum stances is this par tic u lar rank ing strat egy
pref er a ble? The an swer is sim ple: in any case when the multivariate method to be ap plied in
the same sur vey re duces dimensionality of the data on the same the o ret i cal grounds as used in
rank ing. In other words, all the meth ods should be log i cally com pat i ble; a prin ci ple fur ther
clar i fied be low with ex am ples. Oth er wise, the rank or der and the re sults can not be con trasted.

Af ter rank ing, the size of the data ma trix can be re duced con sid er ably with out strongly
mod i fy ing the re sults of com pat i ble multivariate anal y ses. For ex am ple, a cen tred PCA re -
stricted to the first three spe cies of the rank or der (93%, Ta ble 8.1B) gives prac ti cally the same 
re sult for the first two com po nents as the en tire set of spe cies (the reader may ver ify this agree -
ment eas ily). Also, a stan dard ized PCA does not change much if the least im por tant spe cies in
the cor re la tion-based or der ing (Ta ble 8.1C) are omit ted. How ever, there is no point in us ing
the rank or der where the strat egy is log i cally in com pat i ble with the subsequnt an a lyt i cal
method, as is the case with re mov ing re sid u als be fore clas si fi ca tions. The logic of clus ter ing
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Ta ble 8.1. Rank ing the spe cies of Ta ble A1 us ing the strat egy of elim i nat ing re sid u als. The spe cies
re main ing af ter 100% of the vari ance was reached are omit ted. Small in con sis ten cies are due to
round ing er rors.



re quires that sim ple rank ing (see be low) be used for se lect ing the best sub set of vari ables. In
fact, rank ing by re sid u als can not serve as a ba sis for tab u lar re ar range ment, be cause the omis -
sion of some vari ables, no mat ter how neg li gi ble they are, ap pears to be some sort of in for ma -
tion loss for the re searcher! This method is the only one not rec om mended for re ar rang ing the
rows of data ta bles. 

For pres ence/ab sence data, Orlóci (1976a) sug gested mea sur ing the con tri bu tion of vari -
ables to their mu tual in for ma tion (For mula 3.115). The rank or der is es tab lished by find ing in
each step the vari able whose de le tion causes the max i mum de crease of mu tual in for ma tion.
The logic be hind this choice is that this vari able is the most in for ma tive on the other m-1 vari -
ables in the data ma trix. Af ter its re moval, the sec ond most im por tant vari able is found, and so 
on. In ev i ta bly, there is a tie in the last two po si tions of the or der, but the mu tual in for ma tion
may fall to zero much ear lier. A dis ad van tage of the method is its high com put ing de mand.
Ex pan sion of the for mula fa cil i tates the anal y sis of multistate nom i nal vari ables. In ad di tion
to in for ma tion the ory mea sures, some de riv a tives of the 2sta tis tic may also be ap plied to 2m

con tin gency ta bles (Fienberg 1970).

Sim ple rank ing. In nu mer i cal clas si fi ca tion, ei ther hi er ar chi cal or non-hierarchical, the highly
cor re lated vari ables have a ‘syn er gis tic’ re la tion ship, one cor rob o rates the ef fect of the other.
It is gen er ally ac knowl edged that the more vari ables sup port a clas si fi ca tion, the more gen eral
is its va lid ity. There fore, it would be un wise to elim i nate any vari able that cor re lates with an -
other vari able al ready se lected in a pre vi ous step of the rank ing pro ce dure. A dif fer ent rank ing 
prin ci ple should be adapted in or der to show the ab so lute con tri bu tion of the vari ables to some
over all mea sure. In this case, the de com po si tion is not or thogo nal, all the vari ables may be
ranked and the the en tire data ta ble may be re ar ranged. When de fin ing a rank ing cri te rion, one
may think of the vari ance of vari ables, as sum ing that vari ables with low vari ance are likely to
be much less in flu en tial to the sep a ra tion of classes than those with high vari ance. (It is a dif -
fer ent mat ter that any vari able may prove to be use ful a pos te ri ori, but re call sub sec tion 5.5.3.) 
Such a rank ing pro ce dure has been used im plic itly when rare spe cies are de leted from ex -
tremely large eco log i cal data ta bles. The cross prod ucts, covariances and cor re la tions among
vari ables may also be used with out con sid er ing the re sid u als. This means that the val ues ob -
tained in step 2 of the al go rithm of p. 287 are used as the ba sis of rank ing and the anal y sis stops 
here (Podani 1994). If we re call the in ter pre ta tion of Fig ure 8.1, then it be comes clear that in
this way the im por tance of each vari able is a mea sure of how that vari able rep re sents the oth -
ers in the m-di men sional space. There fore, vari ables with odd be hav iour or caus ing mere sto -
chas tic noise in the data get to the end of the rank or der. The im por tance val ues of vari ables
may be added, and thus the per cent age con tri bu tion of a group of vari ables to the to tal may
also be cal cu lated. This is use ful to eval u ate the rel a tive im por tance of vari able groups in the
data ma trix. 

Let us ex am ine the spe cies of Ta ble A1 us ing the pro ce dure of sim ple rank ing. The first
two col umns of Ta ble 8.2 re flect pro por tions in the to tal vari ance, but these fig ures should not 
be taken very se ri ously. This vari ance, as shown by the ex am ple of CAR HUM, is un in for ma -
tive as to the re la tion ships among vari ables. A spe cies with rel a tively low per for mance val ues
may turn out to be very im por tant in sim ple rank ing. The rank ings based on cross prod ucts
and covariances are more sim i lar to each other than in Ta ble 8.1. Such a rank ing is rec om -
mended in any case when the ab so lute quan ti ties are con sid ered im por tant (i.e., when a sub se -
quent clas si fi ca tion uses Eu clid ean dis tances or sum of squares). The rank or der de rived from
cor re la tions is pre ferred when ever the data are stan dard ized. It is use ful to pre pare a re ar -
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ranged ta ble in which the vari ables are listed in their or der of im por tance. For the covariances
in our small ex am ple, this re ar range ment will be given by
      SES SAD     0     0     0     0     0     0     4    70
      CAR HUM     1     0     0     0     0     0     1     4
      FES PAL    20    11     5    15    25     4     6     2
      SES LEU    25    15     0     8    25     1     1     0
      BRO ERE     5     7    18     0     1     0    50    11
      CAR LIP     2     0     1     1     3     1     0     0
      CAM SIB     0     1     0     0     0     0     2     1
      CHR GRY    30     8     5     0     4     0     0     0
      FUM PRO     3    11     7     5     7    12     3     2
      SCA CAN     1    10     0     0     0     0     2     8
      CEN SAD     1     1     1     4     1     2     3     3
      KOE CRI     5     1     2     1     1     0     2     1

In the first rows of this new ta ble, we find the spe cies most ‘re spon si ble’ for the data struc -
ture. One is warned, how ever, not to con sider the re main ing vari ables as be ing ab so lutely use -
less in clus ter ing, be cause low ranked vari ables may be de ci sive in af fect ing mi nor de tails of
clas si fi ca tions. 

There have been many al ter na tives to sim ple rank ing. The mul ti ple cor re la tion of each
vari able (a spe cial case of ca non i cal cor re la tion with one vari able in the first group and n-1
vari ables in the other, see Sub sec tion 7.2) is a rea son able cri te rion which is worth men tion ing. 
Rohlf (1977) and Orlóci (1978) dis cuss this pro ce dure in de tail and point to the dis ad van tage
that the com pu ta tional de mand of this method is high.

Dale & Wil liams (1978) con sider the en tire data ma trix as a con tin gency ta ble (as in
COA), and sug gest to cal cu late the ex pected value of each cell based on the row and col umn
to tals, as done in cal cu lat ing the 2 sta tis tic (de nom i na tor of For mula 3.36). The sum of the
ab so lute val ues of these dif fer ences for each vari able (“eident value”) is the ba sis of rank ing.
A ver sion of this strat egy anologous to rank ing with re sid u als in volves de ter min ing the most
im por tant vari able and re cal cu lat ing the con tin gency ta ble in each step of the anal y sis.

In the pi o neer ing age of numercial clas si fi ca tion, the rank ing of bi nary (pres ence/ab sence) 
vari ables (spe cies) uti lized the 2 sta tis tic as part of monothetic di vi sive clus ter ing (Sub sec -
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Ta ble 8.2. Sim ple rank ing of the spe cies of Ta ble A1 based on four cri te ria.



tion 5.3.2). The interspecific as so ci a tion ma trix was com puted in each clus ter ing step, and its
col umn to tals were used in rank ing (For mula 5.7). The vari able with the max i mum col umn to -
tal was con sid ered to be the most in for ma tive with re spect to the oth ers. For mula 5.8 ap pears
more suit able to this a pri ori rank ing be cause it is in sen si tive to small cell fre quen cies. 

8.1.2 A pos te ri ori rank ing

De ter mining the im por tance of vari ables in the re sults, po ten tially fol lowed by the re ar range -
ment of raw data, should be the in te gral part of al most all meth ods of multivariate anal y sis.
This point is not new in this book; I al ready men tioned pos si bil i ties for eval u at ing the re sults
of hi er ar chi cal clas si fi ca tion (Sub sec tion 5.5.3). There are many more op por tu ni ties for a pos -
te ri ori rank ing, of course, to be dis cussed be low in a frame work that fol lows the main cat e go -
ri za tion of multivariate meth ods. Again, one has to bear in mind that the rank ing cri te rion
should be com pat i ble log i cally with the dis tances or other re sem blance mea sures and data
trans for ma tion meth ods used pre vi ously to de rive the par tic u lar re sult be ing eval u ated.

Im por tance of vari ables in par ti tions. In the optimality cri te rion of the k-means pro ce dure (J,
For mula 4.1), the in flu ence of vari ables is ad di tive (sum ma tion ac cord ing to i). There fore,
par ti tion ing of J into com po nents at trib ut able to in di vid ual vari ables and sub se quent rank ing
of these con tri bu tions pose no prob lems for us. A vari able that ex plains a given clas si fi ca tion
per fectly has a 0 con tri bu tion to J; this hap pens if the vari able has a con stant value within each
class.  On the other hand, the vari ables not sup port ing or even con flict ing with the ac tual par ti -
tion will ac count for most of the vari a tion ex pressed by J. In the global op ti mi za tion strat egy,
the role of vari ables is much less ex plicit. First, dis sim i lar i ties are cal cu lated and then their av -
er ages are com puted dur ing the clas si fi ca tion pro cess, there fore it is more dif fi cult to trace the
ef fect of in di vid ual vari ables. The gen eral pro ce dure in tro duced at the end of Sub sec tion 5.5.3
was de vel oped for this com pli cated sit u a tion. The ik mea sure re flects the ex tent to which
vari able i con trib utes to the within-cluster dis tances (or dis sim i lar i ties) rel a tive to its con tri bu -
tion to be tween-cluster dis tances (dis sim i lar i ties) for k classes. (For the cal cu la tion of these
con tri bu tions, see Podani 1997b). Using the  mea sure, the vari ables can be ranked such that
the or der ing is com pat i ble with the re sem blance func tion used in the clas si fi ca tion. In fuzzy
clus ter ing, the con tri bu tion of vari ables to the fuzzy sum of squares may be eas ily ob tained us -
ing For mulae 4.6 and 4.7. Then, ar rang ing these con tri bu tions in as cend ing or der will pro vide
the rank ing of vari ables. 

In the fuzzy clas si fi ca tion of the three Iris spe cies with the co ef fi cient of fuzz i ness f =
1.25 (Fig. 4.9), the vari able con tri bu tions are as fol lows: PW 10.7%, SW 19.7 %, SL 33.2 %
and PL 36.4%. This is not sur pris ing be cause raw data were used in the cal cu la tions and the
mean val ues of vari ables in crease in that or der. For f = 2.5, the sit u a tion does not change
much, al though the two length char ac ters are in ter changed so that the length of se pals will be
the most con tra dic tory with the clas si fi ca tion.

There are some fur ther pos si bil i ties for a pos te ri ori rank ing of vari ables. The ra tio of the
be tween-group vari ance to the within-group vari ance (if >0) of a vari able, the F-statistic, was
pro posed by Jancey (1979). The ra tio of be tween-group vari ance to the to tal vari ance was
used by Lance & Wil liams (1977). Those au thors used a con tin gency ta ble for each bi nary or
nom i nal vari able (rows are classes and col umns the char ac ter states in this ta ble) and then ex -
pressed the discriminative power of the vari able by the Cramér in dex (For mula 3.37).
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Hi er ar chi cal clas si fi ca tions. A hi er ar chi cal clas si fi ca tion can be con ceived as a se ries of par -
ti tions so that the role of vari ables may be eval u ated for each level sep a rately us ing any
method de scribed above (a typ i cal ex am ple is the method pro posed by Lance & Wil liams,
1977). A vari able that was found to be ex tremely im por tant in the two-cluster clas si fi ca tion of
ob jects may be in con flict with the clas si fi ca tion into three or more classes, while other vari -
ables may ex hibit the op po site be hav ior. For this rea son, there is no point is seek ing the global
im por tance of vari ables in hi er ar chies. 
Cladograms. The im por tance of char ac ters in a phylo gen etic hy poth e sis is readily eval u ated
us ing the con sis tency in dex (6.9) or the re ten tion in dex (6.11). Char ac ters en tirely sup port ing
a given cladogram take the value of 1 and, in a re ar ranged data ma trix, they should ap pear in
the first rows, fol lowed by char ac ters with de creas ing val ues of these in di ces. It is likely that
the or der ing is only par tial, due to tied val ues.
Im por tance of vari ables in or di na tions. The rank ing cri te rion may be se lected in many dif fer -
ent ways, de pend ing pri mar ily on the or di na tion method it self. Since or di na tions are most
com monly por trayed in two di men sions, the most in ter est ing ques tion to ask is to what ex tent
a given vari able cor re sponds to the ar range ment of points along axes 1 and 2. In prin ci pal
com po nents anal y sis, one pos si bil ity of a pos te ri ori rank ing is to mea sure how much per cent
of the vari ance of the char ac ter is ex plained by the two com po nents, as cal cu lated by For mula
7.12.

Sum ma tion of the per cent ages in the lower part of the first two col umns of Ta ble 7.1 re -
veals that the or di na tion of Fig. 7.2 best re flects the fol low ing spe cies: SES SAD (99%), BRO 
ERE (87.7%), CAR HUM (86.8%), SES LEU (63.8%), FES PAL (62.5%), CAM SIB
(61.6%) and CAR LIP (54.5%) whereas the most con flict ing spe cies is KOE CRI (6.2%).
This or der ing cor re sponds quite closely with the sim ple a pri ori rank ing de ter mined us ing
covariances (Ta ble 8.2). Omis sion of KOE CRI from the data there fore would have a neg li gi -
ble ef fect upon the or di na tion re sult.

For stan dard ized PCA, rank ing may fol low the same strat egy as above. The sum of
squared cor re la tions be tween a vari able and two se lected com po nents pro vides a mea sure
how strongly the two com po nents ex plain that vari able. Re call that a vari able gives a unit sum
of squared cor re la tions with all the com po nents!  In ca non i cal cor re la tion anal y sis, we can
use Func tions 7.26-27 for or der ing the vari ables; sep a rately for the the two do mains, of
course. In cor re spon dence-analysis, the dis tance from the po si tion of a vari able to the or i gin is 
a mea sure of im por tance. The larger this dis tance, the more in flu en tial is the vari able on the ar -
range ment of ob jects. As in stan dard ized PCA, the un im por tant vari ables are po si tioned near
the or i gin. In mul ti di men sional scal ing, vari ables can not be ranked be cause the orig i nal data
are not used. If they are nev er the less avail able, then their cor re la tions with the axes may be
con sid ered for rank ing.  Af ter ca non i cal vari ates anal y sis, the communality of vari ables (For -
mula 7.79) serves as a ba sis for rank ing, as dem on strated al ready in Ta ble 7.2.
Re ar ranged ta bles. Al though ma trix re ar range ment as a spe cific multivariate pro ce dure of its
own was not dis cussed yet, the im por tance of vari ables in re ar ranged ma tri ces must be men -
tioned for com plete ness. The rel a tive con tri bu tion of vari ables to re ar ranged data ma tri ces
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pro duced by block clus ter ing (8.2.3) or block seriation (8.2.4) may be used for rank ing the
vari ables, as well as the ob jects3.  For block clus ters, the pro ce dure fol lows the logic of
jackknifing: the cri te rion of block-sharpness is de ter mined with and with out the given vari -
able, and the dif fer ence be tween the two val ues pro vides the de sired mea sure. For the 2 cri te -
rion, this dif fer ence may be both pos i tive and neg a tive: the lat ter re sult (de crease of 2 when
the vari able is re moved) im plies that the pres ence of the vari able in ten si fies block struc ture.
Pos i tive dif fer ence in di cates that the vari able in ter feres with the data blocks and its de le tion
would lead to a more sharply struc tured ma trix. Thus, the rank or der be gins with the vari able
with the high est neg a tive value. When block sharp ness is mea sured by en tropy or sum of
squares, the re moval of a vari able can not cause neg a tive changes. In this case, the most im por -
tant vari ables are those with the small est con tri bu tion to the cri te rion used. When the di ag o nal
struc ture is op ti mized in the data ma trix (Sec tion 8.3), the vari able con tri bu tions are ad di tive
and may be cal cu lated eas ily by For mula 8.10. The greater the con tri bu tion, the more un cer -
tain is the po si tion of the vari able in the re ar ranged ma trix.

8.2 Block clustering

In the pre vi ous sub sec tion, I raised the pos si bil ity of re ar rang ing data ma tri ces based on the
vari ables, but this op er a tion would be in com plete with out con sid er ing the ob jects as well. If
the vari ables and the ob jects alike are clas si fi able into mean ing ful clus ters, then the re ar -
ranged ma trix should re flect these group ings. Such a re ar range ment has a great in ter pre tive
value: groups of vari ables ex plain the par ti tion of ob jects and vice versa. The clas si fi ca tion of
rows and col umns di vides the data ma trix into small submatrices or blocks, each re flect ing the 
re la tion ship be tween cer tain groups of vari ables and ob jects. For pres ence/ab sence data, such
a re la tion ship is the most clear-cut if cer tain blocks con tain only 1-s while oth ers only 0-s. The
in her ent block struc ture of the ma trix is not seen in a data ta ble with rows and col umns writ ten
in an ar bi trary or der: the ex plo ra tion of this hid den in for ma tion is the ob jec tive of block clus -
ter ing al go rithms. The prob lem is il lus trated by the de lib er ately sim ple ma trix of Fig ure 8.2. 

The ex plo ra tion of hid den block struc ture of data ma tri ces may be needed in sev eral fields
of sci ence. In bi ol ogy, for ex am ple, the re ar range ment of very large eco log i cal ta bles has been 
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a                         b
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.1..1...1     ...111...
..1..11..     ...111...
1..1...1.     ...111...
..1..11..     ......111
.1..1...1     ......111
1..1...1.     ......111

Fig ure 8.2. A com pletely dis or dered ma trix (a) may
ob scure the strong in ter ac tion be tween rows and col -
umns, vis i ble only af ter block-clustering (b). For
clar ity, 0-s are re placed by dots.

3 In this case, the objective is not the preparation of a new rearranged table, as previously, because rearrangement
is already given. Ranking variables , however, is still useful here for a better interpretation of data blocks.



the main ob jec tive of the Zürich-Montpellier phytosociological school since its be gin nings
(cf. Braun-Blanquet 1965, Mueller-Dombois & Ellenberg 1974). Ma nip u la tion by hand, how -
ever, is a cum ber some task with ques tion able re sults. The de vel op ment of com put ers has
changed this sit u a tion com pletely. As the most straight for ward so lu tion, one may clas sify the
vari ables as well as the ob jects us ing the same clus ter ing method, and the groups re sult ing
from the two sep a rate anal y ses may be used to re or ga nize the ta ble. The first such study is ap -
par ently due to Wil liams & Lam bert (1961a,b). In agree ment with the at trib ute du al ity prin ci -
ple, the strat egy of as so ci a tion anal y sis (Sub sec tion 5.3.2) was ap plied to plant eco log i cal
quad rats (“nor mal as so ci a tion anal y sis”) by sum ming up 2 val ues for the spe cies, and then to
spe cies (“in verse anal y sis”) by con sid er ing  sums for the quad rats.  The data ma trix was re -
ar ranged ac cord ing to the groups ob tained by ‘cut ting’ the dendrograms at ar bi trarily se lected
lev els. The method has been known as “nodal anal y sis” (Greig-Smith, 1983, re views sim i lar,
com puter-oriented pro ce dures de vel oped later in nu mer i cal plant ecol ogy). The di vi sive
method can be re placed by other hi er ar chi cal or non-hierarchical meth ods that are ap pli ca ble
to both vari ables and ob jects. The “pro jec tion” of the two clas si fi ca tions onto each other will
pro vide the re quired re ar range ment. It is hoped that the in ter play be tween classes of vari ables
and ob jects is best re vealed this way (Fig ure 8.3).

This is not al ways the case, how ever. The two clas si fi ca tions, even though de rived from
the same data ma trix, are in some sense “in de pend ent” from each other. When groups of col -
umns are formed, the pro gram ig nores the classifiability of the col umns and vice versa: the
clas si fi ca tion of col umns does not as sume any group ing of the rows. The in ter ac tion among
ob ject and vari able groups is best re vealed when the blocks di rectly arise from a heu ris tic
search or an op ti mi za tion al go rithm (Gordon 1981). Sep a rate row and col umn clus ter anal y ses 
can not achieve this goal, so that meth ods not yet in tro duced in this book are needed. Thus, this 
sub sec tion can be con ceived as a late con tin u a tion of the chap ters on clas si fi ca tion.
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Fig ure 8.3. Block-clus ter -
ing of the pres ence/ab sence
ver sion of Ta ble A1, with
groups ob tained by com -
plete link age clus ter ing
from Eu clid ean dis tances.
The fig ure il lus trates the
pre s ence of ties, of ten ob -
served for small bi nary data
ma t ri ces (the ties were re -
solved by sin gle link age res -
o lu tion, cf. Sec tion 5.2).
The de lin ea tion of blocks
and the or der of ob jects and
vari ables are ar bi trary to
some ex tent.



Methods of block-clustering are cat e go rized into four main groups ac cord ing to the con -
straints ap plied dur ing the clas si fi ca tion of rows and col umns:

 In the sim plest case (un con strained block clus ter ing), there is no group ing at all for
rows or col umns; the ob jec tive of re ar range ment is to dis close max i mally ho mo ge -
neous blocks or clus ters of val ues within the ma trix. The data blocks may take ir reg u -
lar shapes (Fig ure 8.4a).

 In par tial block-clustering, the rows are clas si fied into p, the rows into q classes, but
any row-wise class may char ac ter ize two or more groups of col umns, and vice versa.
The data blocks are rect an gles (Fig ure 8.4b).

 In cross-partitions or fully blocked data ma tri ces, any data value may be long to only
one row group and one col umn group (Fig ure 8.4c). It is al lowed, al though not re -
quired that p  q. 

 In the spe cial case of p = q, one may im pose a one-to-one cor re spon dence be tween
groups of rows and groups of col umns in the ma trix (Fig ure 8.4d). This is called block
seriation, a pro ce dure tran si tional to wards the meth ods to be dis cussed in Sec tion 8.3.
In this case, em pha sis is placed upon the di ag o nal blocks, usu ally en tirely dis re gard -
ing the ar range ment of val ues fall ing out side.

8.2.1 Un con strained block clus ter ing

Hartigan (1975) lists sev eral al go rithms de vel oped for un con strained block ar range ment. One
such tech nique, the “two-way join ing” strat egy ap plies to bi nary data. The com ple ment of the
sim ple match ing co ef fi cient (3.6) is used as a dis sim i lar ity co ef fi cient to com pare rows by
rows and col umns by col umns. In each step of the anal y sis, the mu tu ally near est two rows or
two col umns are moved right be sides each other in the ma trix. The num ber of max i mally ho -
mo ge neous groups is de ter mined au to mat i cally dur ing the anal y sis. By adapt ing a thresh old
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Fig ure 8.4. Main ob jec tives of block clus ter ing. a: Un con strained blocks, b: par tial block clus ter ing.
c: cross-partition, gen eral case (p q), d: block-seration (p = q). Shad ing re flects within-block ho mo -
ge ne ity. 

        a                   b                   c                  d



value for within-block ho mo ge ne ity, the method can be mod i fied to con form with in ter val
scale vari ables. 

The re sult of two-way join ing of the pres ence/ab sence ver sion of Ta ble A1 is shown in
Fig ure 8.5. The al go rithm forms as many groups as min i mally re quired to in clude only ze ros
or 1-s. There fore, quite many blocks oc cur in the fi nal re sult, and their de lin ea tion is not al -
ways equiv o cal. The dif fer ence from Fig ure 8.3 is sub stan tial. It is easy to see from this ex am -
ple that for large data ma tri ces the re sult can be con fus ing and dif fi cult to in ter pret.

Hartigan’s (1981) an other pro ce dure is suit able for eval u at ing cat e gor i cal data. The ini tial
el e ments of blocks are se lected by the leader al go rithm (cf. Sub sec tion 4.1.4) based on the
cri te rion that their dis tances from the other el e ments ex ceed a prespecified thresh old. The
very first el e ment is the up per left value (x11) of the ma trix. The al go rith mic steps al ter nate
be tween rows and col umns. If too many groups arise, each with a sin gle value only, the
thresh old is too low and the anal y sis should be re peated with a higher dis tance value.

For the pres ence/ab sence case, Bruelheide & Flintrop (1994) sug gest us ing a thresh old as
well: each block is formed by vari ables that ap pear in at least per cent of the ob jects of the
same block, and vice versa. The al go rithm forms the blocks with step wise elim i na tion of rows 
and col umns. The re sult ing ma trix of ten has no clear-cut block struc ture, be cause the el e ments 
of a given block may be iso lated by some other blocks (see their Ta ble 8). Eckes (1995) at -
tempts to min i mize the in crease of sum of squares through the agglomerative “cen troid ef fect
method”. The rel a tively com pli cated al go rithm is in fact an ad ap ta tion of the hi er ar chi cal clus -
ter ing method uti liz ing cri te rion 5.5. Ac cord ing to the au thor, the fi nal blocks are ob tained by
stop ping the fu sions when the in crease of sum of squares is “ex ces sive”. That is, the stop ping
rule is fairly ar bi trary and a more ob jec tive cri te rion is sought. 

8.2.2 Par tial block-clustering of data ma tri ces

Gordon (1981) men tions sev eral pro ce dures de signed for this pur pose, with em pha sis on
Hartigan’s (1972) di vi sive pro ce dure. This ac cepts data mea sured on the in ter val or the ra tio
scale, be cause the within-block sum of squares are min i mized when con cen trat ing the most
sim i lar val ues in the same block. The al go rithm op er ates as fol lows. At the out set, there is no
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Fig ure 8.5. Two-way join ing for
the binarized form of Ta ble A1.
Zeros are re placed by dots for
clar ity.



spe cific re quire ment as to the num ber of blocks. Let  z ij  de note the mean value of the block to
which data value xij be longs, and then the goal is to min i mize the quan tity:

J x z
i

n

j

m

ij ij 
 
 

1 1

2( ) .                                                                                              (8.3)

Hartigan (1972) pro posed search ing the min i mum by an hi er ar chi cal strat egy. The data ma -
trix, and in the lat ter steps the blocks are suc ces sively di vided into two parts ei ther by rows or
by col umns, de pend ing on whether the row-wise or col umn-wise di vi sion pro vides the max i -
mum  decrase of the J mea sure. How ever, the re sult de pends greatly on the ini tial or der ing of
the rows and the col umns, so that the method should be mod i fied to gen er ate per mu ta tions as
well to al low other start ing sit u a tions. With out this, the di vi sive method can only be used if the 
or der of rows and col umns is un equiv o cal, that is, de fined by some mean ing ful ex ter nal cri te -
rion or a rank ing pro ce dure. Dale & An der son (1973) pro posed to di vide the data ma trix in a
sim i lar way, us ing a monothetic cri te rion.

8.2.3 Cross-partitions

The ob jec tive is to ar range the vari ables into p, and the ob jects into q classes such that the re -
sult ing cross-partition, that is, the pq rect an gu lar blocks of the ma trix sat isfy some optimality 
cri te rion. Podani & Feoli (1991) se lected three such cri te ria from the many pos si bil i ties for
mea sur ing block sharp ness:

 sum of squares within blocks for in ter val and ra tio scale vari ables (For mula 8.3, de -
noted this time by  J(p,q));

 weighted within-block en tropy for nom i nal char ac ters:
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where ki is the num ber of el e ments in vari able group i, kj is the num ber of el e ments in
ob ject group j, s is the num ber of states of the nom i nal char ac ters  (s  2) and fhij is the
fre quency of char ac ter state h in block ij; 

 the blocks are con sid ered as the cells of a pq con tin gency ta ble, and the sum of val -
ues within each block ij is taken as the cell fre quency (fij). Then, For mula 3.36, de -
noted here by  ( , )p q

2   ap plies. This for mula is suited to pres ence/ab sence data, al though 
its for mal ap pli ca tion to data com pris ing fre quen cies (such as counts) is also con ceiv -
able. 

The strat egy is to min i mize the first two cri te ria or max i mize the third in or der to ob tain max i -
mally ho mo ge neous blocks. The ex pe ri enced reader may im me di ately see that this is a hard
prob lem, be cause for fixed val ues of n, m, p and q the pos si ble num ber of re ar range ments, as
com puted by the Stirling for mula (4.17) is S(n,p)S(m,q), which is an as tro nom i cal num ber for
most prac ti cal prob lem sizes (within-block or der ing is im ma te rial, of course). In lieu of al go -
rithms that lead to the op ti mum in rea son able time, we re store to heu ris tic search ing strat e gies. 
The method pro posed by Podani & Feoli (1991) is an it er a tive al go rithm which re lo cates a
row or a col umn of the ma trix such that the cri te rion is max i mally im proved in each step. The
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it er a tions stop if there are no rows or col umns the re lo ca tion of which would cause fur ther im -
prove ment. For the J(p,q) cri te rion, this method is the two-way gen er al iza tion of k-means clus -
ter ing. Be ing an it er a tive method, the fi nal re sult is greatly in flu enced by the start ing
con fig u ra tion (or der of rows and col umns) and – de pend ing on data struc ture – the it er a tions
may eas ily con verge into suboptimal so lu tions. There is no guar an tee that even from hun dreds 
of ran dom ini tial ar range ments the anal y sis will con verge into the (ab so lute) op ti mum, al -
though the best of the re sults may be quite close to it. The rel a tively large com put ing de mand
of the pro ce dure is not a se ri ous prob lem now a days, even if the num ber of rows and col umns
ex ceeds 100. 

Bi nary data have the ob vi ous ad van tage that all the three cri te ria dis cussed above ap ply to 
them. With pa ram e ters p = q = 2, 100 runs were per formed on the pres ence/ab sence ver sion
of Ta ble A1 for each cri te rion. Af ter se lect ing the best one from each se ries, the re ar ranged
ma tri ces of Fig ure 8.6 were ob tained. One in ter pre ta tion of the re sults is as fol lows.

Using the 2 sta tis tic, the it er a tions pro duced one ex tremely bad re sult (2= 1.75), the
max i mum value of 2 (10.1) re sulted 42 times (Fig ure 8.6a), while there were many out comes 
with in ter me di ate suc cess. For the J mea sure, the same value (Jmax = 12.75) and the same re -
ar range ment were ob tained in all the 100 anal y ses! In case of en tropy, the par ti tion of sites
was the same in all re sults, whereas the best spe cies clas si fi ca tion var ied (Fig ure 8.6b, Hmax =
223.57, oc cur ring 62 times). It is to be pointed out that suboptimal val ues (224.76 and 225.54) 
were also ob tained in a large num ber of it er a tions with the only dif fer ences be tween the clas -
si fi ca tion of col umns. These ex am ples dem on strate suf fi ciently that the three cri te ria do not
nec es sar ily lead to the same fi nal con fig u ra tion and if so, their ef fi ciency in find ing the op ti -
mum is con sid er ably dif fer ent. The block con tain ing only 0-s in Fig. 8.6a, or other two blocks 
con tain ing al most only 1-s in Fig. 8.6b can not ap pear si mul ta neously in the re sult, but our
com bined ap proach de tected all of them. 

It may have a great  in ter pre tive value to iden tify vari ables that ex plain the re ar range ment
most per fectly or, on the other hand, to find those that strongly con flict with the re sult. As
men tioned al ready in Sub sec tion 8.1.2, the vari able con tri bu tions are readily ex pressed by the
per cent age change af ter the re moval of the given vari able from the data. The or der be low lists
the vari ables from the most ex plan a tory to the most con flict ing:
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Fig ure 8.6. Most op ti mal block clus ter ing of the pres ence/ab sence ver sion of Ta ble A1 based on the 2

and the J sta tis tics (a) and en tropy,  H (b)  af ter 100 it er a tions such that  p = q = 2.

           1 2 7 8   3 4 5 6                 1 2 7 8   3 4 5 6

  CAM SIB  . 1 1 1   . . . .        CEN SAD  1 1 1 1   1 1 1 1
  CAR HUM  1 . 1 1   . . . .        FES PAL  1 1 1 1   1 1 1 1
  SCA CAN  1 1 1 1   . . . .        FUM PRO  1 1 1 1   1 1 1 1
  SES SAD  . . 1 1   . . . .        KOE CRI  1 1 1 1   1 1 1 .

  BRO ERE  1 1 1 1   1 . 1 .        BRO ERE  1 1 1 1   1 . 1 .
  CAR LIP  1 . . .   1 1 1 1        CAM SIB  . 1 1 1   . . . .
  CEN SAD  1 1 1 1   1 1 1 1        CAR HUM  1 . 1 1   . . . .
  CHR GRY  1 1 . .   1 . 1 .        CAR LIP  1 . . .   1 1 1 1
  FES PAL  1 1 1 1   1 1 1 1        CHR GRY  1 1 . .   1 . 1 .
  FUM PRO  1 1 1 1   1 1 1 1        SCA CAN  1 1 1 1   . . . .
  KOE CRI  1 1 1 1   1 1 1 .        SES LEU  1 1 1 .   . 1 1 1
  SES LEU  1 1 1 .   1 1 1 .        SES SAD  . . 1 1   . . . .

                                    a                                                      b



                             chi2%                                             J%                                            H%          
.1 SCA CAN -27,08   1 FUM PRO   -2,52   1 SES SAD    -5,83
 2 CAM SIB -20,31   2 FES PAL   -2,52   2 CAR HUM    -7,24
 3 CAR HUM -20,31   3 CEN SAD   -2,52   3 CAM SIB    -7,24
 4 SES SAD -13,54   4 SCA CAN   -2,61   4 SCA CAN    -8,69
 5 CAR LIP -11,38   5 CAR HUM   -5,88   5 CHR GRY    -9,31 
 6 CEN SAD  -2,88   6 CAM SIB   -5,88   6 CAR LIP   -11,54
 7 FES PAL  -2,88   7 KOE CRI   -7,28   7 BRO ERE   -12,17
 8 FUM PRO  -2,88   8 SES SAD  -10,46   8 SES LEU   -12,49
 9 SES LEU  -2,16   9 SES LEU  -12,04   9 KOE CRI   -13,01
10 CHR GRY  -1,44  10 BRO ERE  -12,61  10 FUM PRO   -13,01 
11 KOE CRI   1,55  11 CAR LIP  -18,49  11 FES PAL   -13,01   
12 BRO ERE   6,42  12 CHR GRY  -22,69  12 CEN SAD   -13,01

Al though the re ar ranged ma trix it self is iden ti cal for the first two cri te ria, there are dif fer -
ences in the rank or der of vari ables. As ex pected, the vari able ef fects dif fer with the mea sure
of block sharp ness. For ex am ple, CAR LIP is strongly discriminative be tween the two groups
so that is re moval would re sult in a sig nif i cant de crease of 2;  it con trib utes much to the sum
of squares of the lower left block of the ta ble. It is left to the reader to in spect fur ther de tails
of the re sults. The new or der of ob jects is also worth ex am in ing:

                           chi2%                   J%                        H%
.1  8    -25,92    1 5  -2,94   1 4  -11,57  
 2  7    -23,08    2 3  -7,19   2 6  -11,57
 3  5    -18,27    3 4 -12,09   3 3  -13,24
 4  3    -15,90    4 1 -13,40   4 5  -14,94
 5  4    -13,70    5 7 -14,71   5 2  -17,79
 6  6    -11,42    6 2 -17,65   6 8  -17,79
 7  2      6,00    7 6 -17,65   7 1  -19,14
 8  1     11,72    8 8 -20,26   8 7  -19,14

For rea sons de tailed above, the se quence of ob jects is not iden ti cal in the first two cases,
not with stand ing that the op ti mal block struc ture is the same.

Con strained block clus ter ing. In the chap ters on clus ter ing and or di na tion, we saw al ready
some meth ods which force the anal y sis to run within cer tain lim its. Block clus ter ing may also
be con strained, for ex am ple, by keep ing the par ti tion of ei ther the rows or the col umns fixed.
This may be nec es sary in ecol ogy, when the clas si fi ca tion of sam ple sites is not al lowed to
change be cause it is al ready a re sult of a con sen sus anal y sis of many al ter na tive par ti tions (see
Sec tion 9.4) and we need the best ex plan a tory clus ters of spe cies. In this case, only the spe cies
are re lo cated from one clus ter to the other dur ing the it er a tions. The re verse pro ce dure is also
pos si ble; the par ti tion of vari ables is fixed in or der to find the best groups of ob jects to op ti -
mize, say, an iden ti fi ca tion key. 

Con cen tra tion anal y sis. Hav ing fin ished the block clus ter ing of pres ence/ab sence data, the
mu tual interpretability of row and col umn classes may be en hanced by or di na tion (“anal y sis
of con cen tra tion”, Feoli & Orlóci 1979). This is in fact a sym met ri cally weighted cor re spon -
dence anal y sis of groups (Sec tion 7.3) af ter the ad just ment of within-block sums, fij, based on
the for mula:

F
f f
n

f
nij

ij

ij g

p
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gh
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 ..

1 1

 .                                                                                       (8.5)
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In this, Fij is the new value and nij is the size of block ij. Ad just ment is nec es sary to elim i nate
ex ces sive dif fer ences in block sizes, so that all of them will at tain equal im por tance (Orlóci &
Kenkel 1985). The num ber of pos si ble or di na tion axes is t = min{p–1, q–1}. The 2 -sta tis tic
cal cu lated from ad justed blocks is dif fer ent from the op ti mized value in the it er a tions and is
use ful to mea sure the good ness of re ar range ment (“rel a tive di ver gence”):

RD
t f


2

..

 .                                                                                                                (8.6)

RD  ranges from 0 to 1, in di cat ing the sharp ness of block struc ture rel a tive to the pos si ble min -
i mum and max i mum. The RD score may be used to find the best block struc ture in the most
gen eral case where the val ues of p and q are al lowed to change.

8.2.4 Block-seriation 

The meth ods in tro duced in the pre vi ous sub sec tion con sider only the in ter nal ho mo ge ne ity of
blocks; the or der ing of row and col umn groups is free. The most highly spe cial ized meth ods
of block clus ter ing go a lit tle fur ther by at tempt ing to max i mize the con trast be tween blocks in 
the di ag o nal po si tion and the oth ers (Fig ures 8.2 and 8.4d), so that or der ing be comes cru cial.
Such ap proaches re quire that p = q. Whereas in cross-partitions all blocks are equal in im por -
tance, block seriation4 (Marcotorchino 1991) em pha sizes di ag o nal struc ture and treats the
non-diagonal blocks as a sin gle unit, ir re spec tive of the in ter nal struc ture. Block seriation is
most com monly ap plied to pres ence/ab sence data. The p-block seriation of bi nary ma trix X,
such that a row group is de noted by Ak, a col umn group by Bk, in volves max i miz ing the Gar cia 
- Proth (1985) cri te rion given by the fomula:

GP x xp
k

p

i A j B
ij

k

p

i A j B
ij

k k k k

  
     
   

1 1

1
, ,

( ).                                            (8.7)

Its mean ing is per haps sim pler in words than in math e mat i cal for mal ism: the goal is to con -
cen trate as many 1-s into the di ag o nal blocks, leav ing as few as pos si ble in the off-diagonal
blocks. In a per fect sit u a tion, the di ag o nal blocks con tain only 1-s, the oth ers 0-s, caus ing  GPp
to reach its max i mum value, nm. Con se quently,  GPp/nm may be used as a rel a tive mea sure of
di ag o nal block sharp ness, with val ues fall ing within the in ter val [0,1]. When op ti miz ing this
in dex, we en coun ter the same prob lems as in many oc ca sions be fore: ex act al go rithm is
known only  for rel a tively small n, m (<30) (Marcotorchino 1991), but op ti miz ing GP for real
prob lem sizes  is im pos si ble within rea son able time. It may hap pen that the heu ris tic meth ods
of the pre vi ous sec tions give a good ap prox i ma tion to the op ti mum value of GP, or even hit it,
but there is no guar an tee for its per fect suc cess.
 

In plant ecol ogy, block seriation is an at trac tive pro ce dure where the com mu ni ties change
along a sin gle, back ground gra di ent and yet, there are well-distinguishable veg e ta tion types or 
noda. The start ing data are not al ways of the pres ence/ab sence type; but counts or cover per -
cent ages can not be used for op ti miz ing the Gar cia-Proth cri te rion5. Two-way in di ca tor spe -
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5 Nevertheless, coefficient (8.7) can be modified to comply with any non-ordinal data types to measure the

discrepancy between diagonal and off-diagonal blocks. 



cies anal y sis (Hill 1979a), as in cor po rated into the TWINSPAN  pro gram (Sub sec tion 5.3.1)
may be a good so lu tion of this data-type prob lem, al though it does not have any ex plicit
optimality cri te rion. The anal y sis is based on the si mul ta neous or di na tion of spe cies and sites,
fol lowed by their two-cluster par ti tion ing ac cord ing to the or di na tion scores on each axis. The 
end-result of this com bined or di na tion-classification ap proach is a di ag o nally struc tured ma -
trix in which, if there is a close agree ment be tween spe cies and site groups, the blocks are eas -
ily rec og nized (there is no p value to be spec i fied in ad vance). If there is no in her ent
group/block struc ture in the data, then the prob lem re duces to sim ple seriation by re cip ro cal
av er ag ing, with po ten tially mean ing less di vi sions (but see the next sub sec tion). Wildi (1989)
sug gested a more com plex in ter ac tion of clas si fi ca tion and or di na tion al go rithms with the aim 
to elim i nate noisy el e ments (ei ther spe cies or sites) from the data and to max i mize rec og ni tion 
of di ag o nal blocks in this man ner.

Block seriation of dis tance ma tri ces. The dis cus sion of block-seriation may be ex panded
readily to dis tance or sim i lar ity ma tri ces.  Now, the ob jec tive is to con cen trate small dis tances
(large sim i lar i ties) into the di ag o nal blocks to max i mize con trast with the other, off-diagonal
blocks. The re ar ranged ma trix will re flect the clas si fi ca tion of ob jects; the more clear-cut the
groups, the sharper is the block struc ture. Since row i is the same as col umn i, the strat egy will
be sim pler than for data ma tri ces: the re lo ca tion of a row will au to mat i cally in volve re lo ca tion
of the cor re spond ing col umn. This prob lem rarely ap pears alone; ma trix re ar range ment is usu -
ally based on pre vi ous clas si fi ca tions and serves as an a pos te ri ori il lus tra tive ve hi cle to clar -
ify an ex ist ing clas si fi ca tion. 

The block seriation of dis tance ma tri ces is closely re lated to the clas si cal prob lem of ma -
trix shad ing: the cells of the ma trix are col ored such that their dark ness is pro por tional to the
dis tance val ues 6. The sim plest, and most com monly used strat egy is to gen er ate first a hi er ar -
chi cal clas si fi ca tion of ob jects and to re or der the ob jects in the dis tance ma trix ac cord ing to
the dendrogram (Fig ure 8.7). How ever, a dendrogram can be drawn in 2m-1 ways with out
chang ing the clas si fi ca tion to pol ogy it self (re call Sub sec tion 5.1, Fig ure 5.2), so that the def i -
ni tion of blocks is in ev i ta bly ar bi trary to some ex tent. Gale et al. (1984) have shown that find -
ing the best dendrogram shape is as so ci ated with the con ven tional (non-block) seriation of the
dis tance ma trix, so that it is time to turn our at ten tion to the next sec tion.

8.3 Seriation

Seriation in volves find ing a si mul ta neous or der ing (per mu ta tion) of the rows and the col umns 
of data ma tri ces with the ob jec tive of re veal ing back ground one-dimensional gra di ents. The
ba sic idea is that large scores should be con cen trated along the di ag o nal, while the low val ues
should fall as far from it as pos si ble. Seriation was first used for the in di rect dat ing of geo log i -
cal strata based on ar chae o log i cal and paleontological find ings. In other words, seriation fa cil -
i tates re con struc tion of a tem po ral se quence of ob jects based on the con tin u ous change of their 
char ac ter is tics (Kend all 1970, 1971, Goldmann 1971). In bi ol ogy, time is just one fac tor to
con sider in ex plain ing a se quence; an eco log i cal gra di ent may also be re spon si ble for the si -
mul ta neous or der ing of ob jects and vari ables. It is now clear that seriation is a spe cial
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one-dimensional or di na tion ap plied di rectly to the raw data, so that this sec tion could be con -
sid ered as a con tin u a tion of Chap ter 7. Dis tance ma tri ces may also be seriated, of course. In
this case, a per mu ta tion of ob jects is sought so that small dis tances are con cen trated near the
di ag o nal (for sim i lar i ties, the op po site is the goal). This prob lem is sim pler than data seriation, 
be cause only one per mu ta tion is op ti mized. Using the ter mi nol ogy of ma trix shad ing, the ob -
jec tive is to find a dark di ag o nal band in a data or sim i lar ity ma trix, which is con tin u ously
light ened to wards the lower left and up per right cor ners (or the other way, for dis tances).
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Fig ure 8.7. Re ar -
range ment and
shad ing of the dis -
tance ma trix for the
points of Fig ure 4.3
af ter the sin gle link -
age clus ter ing of
ob jects (Fig. 5.6b).
Usually, the con -
gru ence be tween a
clus ter ing and the
ma trix is less clear
than in this ex am -
ple. The di a gram
was pre-pared us ing 
the SYN-TAX Mac
pro-gram; white
cor re sponds to the
min i mum dis tance
(0), black to the
max i mum (7.87)
with a con tin u ous
transtition be tween
the ex tremes. 



8.3.1 Seriation of data ma tri ces

The rows and the col umns of a data ma trix may be or dered nu mer i cally in many ways, for ex -
am ple, by or di na tion. Since re cip ro cal av er ag ing (cor re spon dence anal y sis, Sub sec tions
7.3.1-2) is es sen tially a si mul ta neous or di na tion of ob jects and vari ables, it ap pears to be best
suited to this prob lem if the data com prise fre quen cies.  Re cip ro cal av er ag ing is the ba sis of
the classi fi ca tory pro gram TWINSPAN as well. Prin ci pal com po nents anal y sis may also be
con sid ered for this pur pose, be cause the ob jects and vari able scores on the first axis may pro -
vide a mean ing ful or der ing for ma trix re ar range ment. An or di na tion-based re or der ing is most
ef fi cient if a strong one-dimensional back ground gra di ent dom i nates in the data; in other
words, the first eigenvalue is rel a tively large.

The larg est eigenvalue from the cor re spon dence anal y sis of dune veg e ta tion data (Ta ble
A4) is 0.53 (25%), in di cat ing a ‘mod er ately strong’ back ground gra di ent. The re or der ing of
rows and col umns based on the co or di nates on the first axis is shown in Fig ure 8.8a. The
non-zero val ues (in gray) are ar ranged in a dis tinct, wide band along the di ag o nal. The spe cies 
pres ent in most sites oc cur in the mid dle of the ta ble. The iden ti fi ca tion of the back ground
gra di ent re quires fur ther anal y ses; the CCOA us ing the same data and ex ter nal in for ma tion on 
en vi ron men tal vari ables (Fig. 7.17) is the most log i cal choice for this pur pose.

Or di na tion-based seriations rely upon one (usu ally the first) axis, and re flect se quen tial in -
for ma tion only for the par tic u lar di men sion se lected. Clearly, the other, lin early in de pend ent
com po nents of the vari ance are dis re garded in this re ar range ment. Con se quently, if the first
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Fig ure 8.8. Seriation of the dune veg e ta tion data (Ta ble A4) ac cord ing to the first cor re spon dence
anal y sis axis (a) and by max i miz ing cri te rion 8.10 (b). 

                   a                                                  b



eigenvalue is rel a tively small, the re ar ranged ma trix will not be very in for ma tive. In fact, or di -
na tions do not op ti mize any func tion mea sur ing the good ness of re ar range ment di rectly, and
we can not ex pect that they will pro vide re sults com pa ra ble to di rect seriation meth ods. The di -
rect pro ce dures use a cri te rion vari able re fer ring to the di ag o nal ar range ment of val ues, ex -
plic itly con sid er ing only a one-dimensional se quence for both the rows and the col umns. The
task is enor mous, be cause the num ber of pos si ble se quences is ex actly n!m!/4 (the num ber of
row per mu ta tions mul ti plied by the num ber of col umn per mu ta tions, then di vided by 22, be -
cause the di rec tion of or der ings is im ma te rial for us). For large val ues of n and m, there is no
pos si bil ity to try all the per mu ta tions, and no al go rithms are avail able yet for find ing the op ti -
mum in rea son able time. 

McCormick et al. (1972) pro posed max i miz ing the neigh bor hood cri te rion for the per mu -
ta tions of n rows and m col umns:

MC x x x x xP n P m
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In this,  x x x xj n j i im0 1 0 1     = 0 by def i ni tion. For mula 8.8 con cen trates upon the lo cal
con di tions in the data ma trix, and can not be ex pected to pro vide ac cept able re sults un der all
cir cum stances. In or der to find a more gen eral so lu tion to this prob lem, we should see that For -
mula 8.8 can be de com posed into the sum of two terms:
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that is, into com po nents by col umns and by rows. It has the con se quence that the rows and the
col umns can be treated sep a rately and that the ma trix can re or dered us ing the two op ti mal per -
mu ta tions. The au thors pro pose a heu ris tic so lu tion of the fa mous ‘trav el ing sales man’ prob -
lem to find the op ti mum of (8.9). 

It is suf fi cient to ex am ine how the method works for rows be cause the same al go rithm ap -
plies to the col umns. The ba sic idea is to take row 1 as the pivot el e ment, and then all other
rows are ex am ined whether they should be in serted be fore or af ter the pivot row in or der to
max i mize the in crease of MCP(n). Af ter re lo cat ing the row that pro vides this max i mum, we
ex am ine the re main ing n-2 rows each of which can be placed into 3 po si tions. Then, the op ti -
mal po si tion of the re main ing n–3 rows is se lected from the 4 pos si bil i ties, and the it er a tions
con tinue in a sim i lar way un til all rows take their new po si tion. Since the re sult de pends on
the choice of the pivot el e ment, the whole pro ce dure is re peated n-1 times to al low all rows to
be come the first el e ment. Then, the best of the n re sults is ac cepted as the fi nal per mu ta tion,
even though we can not be sure that this is the ab so lute (global) op ti mum for row re ar range -
ment. The search is re peated for the col umns, and then the ma trix is re or dered ac cord ing to
the best two per mu ta tions. 

Other func tions con sider more than the im me di ate neigh bor hood of di ag o nal val ues. The
most at trac tive fea ture of re ar ranged ma tri ces is the so-called Rob in son prop erty (Rob in son
1951). A ma trix is said to pos sess this prop erty if its val ues de crease monotonically in the
rows as well as in the col umns when mov ing away from the di ag o nal in both di rec tions. For
data ma tri ces, the Rob in son prop erty is im plic itly con sid ered by the fol low ing cri te rion
(Podani 1994):
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In this for mu la tion, each xij value is weighted by the sum of its po si tional dif fer ences from the
di ag o nal. These are the num ber of rows (within col umn j) and the num ber of col umns (within
row i) that value xij should be moved to get right into the di ag o nal. Usually, this is not an in te -
ger. Thus, if a large value falls far from the di ag o nal, then its con tri bu tion to mea sure 8.10 will
also be large. The ob jec tive is there fore to min i mize the amount of the  mea sure in some
way. The min i mum im plies that the ma trix is in the clos est state to meet the Rob in son con di -
tion. Since the sum of 8.10 can not be de com posed into row and col umn con tri bu tions – con -
trary to For mula 8.8 – sep a rate optimizations of row and col umn per mu ta tions can not help.
Sim i larly to the al go rithm of block-clustering (8.2.3), a ran dom ini tial con fig u ra tion may be
mod i fied iteratively by re lo cat ing the row or the col umn that pro vides the best im prove ment in 
each step. This is time-consuming for large ma tri ces. Also, there is a high chance that the it er -
a tions con verge into lo cal op tima so that many par al lel runs are nec es sary, with no guar an tee
that the best re sult will ever be found. The very poor lo cal op tima of ten aris ing from ran dom
con fig u ra tions can be avoided if the start ing per mu ta tions rely upon a pre vi ous or di na tion
(e.g., RA), as il lus trated be low.

For the sake of com par i son with RA re or der ing, the it er a tive pro ce dure is ap plied to the
veg e ta tion data of Ta ble A4. From 50 ran dom ini tial per mu ta tions, the best re sult was 
  5078. The re or dered and col ored ma trix is shown in Fig ure 8.8b. Ac cord ing to cri te rion
8.10, this is su pe rior to the RA-based re ar range ment (Fig. 8.8a), for which   5698. How -
ever, the RA-result was con sid er ably im proved by it er a tions and the good ness of re ar range -
ment (  5093) strongly ap prox i mated the best ran dom iza tion-based re sult. (To be true,
most of the 50 ran dom iza tion-based anal y ses pro duced a better out come than RA.) A vi sual
com par i son of the two col ored ma tri ces of Fig ure 8.8 shows un equiv o cally that the use of the 
 mea sure pro duces a higher con cen tra tion of large val ues along the di ag o nal than RA. As a
‘com pro mise’, some small val ues get much fur ther away from the di ag o nal than in the RA re -
ar range ment. The de gree of dif fer ence be tween the two re sults is al ways case de pend ent, so
that it is worth try ing both pro ce dures.

8.3.2 Seriation of dis tance and sim i lar ity ma tri ces

This is an eas ier job than op ti miz ing data ma tri ces, be cause we have to worry about only one
per mu ta tion. The re ar range ment may be based on an or di na tion, as be fore. Mea sure 8.10 also
ap plies here, so much the more be cause its for mula and its op ti mi za tion sim plify greatly for
sym met ric ma tri ces:
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Sim i lar ity ma tri ces are op ti mized by the al go rithm ap plied to raw data us ing cri te rion 8.10,
whereas for dis tance ma tri ces the value of   is min i mized.

One hun dred ran dom ar range ments of the dis tance ma trix of Eu ro pean cit ies (Ta ble A4)
were an a lyzed by the it er a tive re lo ca tion al go rithm of seriation. Since ma trix size is rel a tively
small, the best re sult ( = 354400) was reached in as many as 64 runs (Fig. 8.9a). The col ored 
ma trix dem on strates the fre quent case where we can not re move all the large dis tances from
near the di ag o nal. Hel sinki, Ma drid and Is tan bul are at the tips of a tri an gle and their dis tance
re la tion ships can not be por trayed in one di men sion suf fi ciently. The ap pear ance of large val -
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ues in the cor ner of the ma trix in di cates a sit u a tion anal o gous to the horse shoe ef fect of ten ob -
served in or di na tions. Seriation was some what more ‘suc cess ful’ from the Eu clid ean dis tances 
for the ob jects (col umns) of Ta ble A4 (  18410; Fig ure 8.9b). This op ti mum oc curred 14
times out of the 50 runs of the al go rithm. The or der of ob jects dis agrees with the se quence
seen in Fig ure 8.8 and two rel a tively dis tant ob jects (3 and 19) are too close to each other in
the mid dle of the di a gram, show ing fur ther sim i lar ity to the horse shoe ef fect. The ar range -
ment along the di ag o nal can be used for a vi sual de tec tion of blocks, sug gest ing a two-cluster
group ing of ob jects with a po ten tial sub di vi sion in the left group. Re call the prop o si tion put
for ward by Gale et al. (1984): seriation may be used in di rectly to rec og nize group struc ture in
the data.

The Rob in son con di tion ap plies di rectly to re sem blance ma tri ces, as shown by Hubert et al.
(1982). They sug gested to cre ate a stan dard Rob in son ma trix in which one el e ment xij =
m–|i–j|.  Thus, all val ues in the di ag o nal are equal to m, and the val ues de crease reg u larly and
mo not o nously off the di ag o nal. The most op ti mal seriation of a sim i lar ity ma trix is there fore
the one show ing max i mum pos i tive cor re la tion with the Rob in son ma trix. For dis tances, the
neg a tive cor re la tion is to be max i mized. 

8.4 Literature overview

The lit er a ture of char ac ter rank ing and ma trix rearragement meth ods is much poorer than
usual in other fields of multivariate anal y sis. I have made ref er ences to most of the rel e vant pa -
pers and books al ready. For char ac ter rank ing, the best source of in for ma tion is Orlóci (1978).
Most of the al go rithms de vel oped for find ing in ter nal blocks in data ma tri ces are in tro duced by
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Fig ure 8.9. Seriation of the Eu clid ean dis tance ma trix of Eu ro pean cit ies (Ta ble A7, a) and of the col -
umns (sam ple sites) of Ta ble A4 (b) by max i miz ing the quan tity 8.11.



Hartigan (1975). In the bi o log i cal sci ences, the need of tab u lar re ar range ment ap pears most
com monly in plant ecol ogy and phytosociology, there fore most text books de voted to this sub -
ject have sev eral ref er ences to the man ual and au to mated pro ce dures. Marcotorchino (1991)
and the ref er ences therein are a good start ing point for those in ter ested in the math e mat i cal
back ground of seriation al go rithms. An early and still use ful sum mary of the topic is the book
ed ited by Hodson et al. (1971). In ad di tion to the key-paper by Kend all, this vol ume com prises
four other con tri bu tions to the the ory and ap pli ca tion of ar chae o log i cal seriation. Ma trix shad -
ing is treated in de tail by McIntosh (1978), mainly from an eco log i cal and phytosociological
view point.

8.4.1 Com puter pro grams

There are rel a tively few pro gram pack ages that of fer so lu tions to rank ing and re or der ing prob -
lems. Ta ble 8.3 pro vides a sum mary of rel e vant fea tures avail able in pack ages al ready men -
tioned in this book. The rou tines in SYN-TAX (Podani 1989c) save the re ar ranged ma trix
ac cord ing to the new or der ing of vari ables. Shaded ma tri ces are also part of the out put, for both 
block-clustering and seriation (the fig ures in this chap ter were also pre pared by this pro gram).
Statistica uses sev eral col ors ap plied to cat e go ries of data val ues to an at trac tive dis play of
the re sults of two-way join ing.

Pro grams writ ten in the BA SIC lan guage are listed for char ac ter rank ing and con cen tra tion
anal y sis in Orlóci (1978) and Orlóci & Kenkel (1985). The best-known pro gram for the
phytosociogy-oriented au di ence is un doubt edly TWINSPAN, whose code (Hill 1979a) ap pears 
to be ‘trans mit ted’ to sev eral other pro gram pack ages (e.g., PC-ORD, McCune 1986). Pro gram 
TABORD (Maarel et al. 1978) also de serves men tion, al though I am not aware of any up -
grades of it to cur rent sys tems.

8.5 Imaginary dialogue

Q: You ad mit ted that some rank ing meth ods can not be used for re ar rang ing data ma tri ces,
then why do you dis cuss them in this chap ter?
A: As I men tioned, if the rank ing pro ce dure can not pro vide a full or der ing of vari ables, then
the re main ing vari ables have to be pro vided in an ar bi trary se quence at the end of the new data
ma trix. Nev er the less, I main tain that all rank ing pro ce dures should be treated in the same
place, and this chap ter is the most suit able to this pur pose. I am con vinced that in pub lished
data ma tri ces the vari ables should be pre sented in or der of their im por tance, un less there is a
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Ta ble 8.3. Char ac ter rank ing and ma trix re ar range ment in some pro gram pack ages.

Statistica BMDP SYN-TAX
Ranking by elimination ++
Simple ranking ++
Two-way joining ++
Block seeking (“leader algorithm”) ++
Block clustering by iterative relocations ++
Concentration analysis ++
Iterative seriation from  distance and data matrices +



strong rea son to do it oth er wise (e.g., in al pha betic or der, or spe cies grouped ac cord ing to life
forms).

Q: The rig or ous di vi sion of rank ing pro ce dures into a pri ori and a pos te ri ori meth ods ex -
cludes the pos si bil ity of in ter me di ate strat e gies...

A: I see what you mean: you imag ine an it er a tive al go rithm in which each step eval u ates the
im por tance of char ac ters and gives higher weight to the im por tant ones be fore re fin ing the or -
der ing in the sub se quent com pu ta tions. The it er a tions could stop when we have a suf fi ciently
sta ble re sult. Actually, Jancey & Wells (1987) al ready pro posed a re al iza tion of this idea in a
classi fi ca tory con text. In each step of the di vi sive al go rithm, there is a re-ranking of vari ables
to en sure that each vari able is em pha sized at that hi er ar chi cal level where it is most im por tant,
whereas at other lev els it is dis re garded as be ing a source of noise. Fowlkes et al. (1988) pro -
vide an over view of it er a tive re fine ment pro ce dures, al though they pro pose se lect ing a sub set
of most rel e vant char ac ters, rather than or der ing. This built-in vari able screen ing is called for -
ward se lec tion in the lit er a ture. 
Q: I like your pro posal that the vari ables most re spon si ble for, or most con flict ing with a
given block-structure are se lected by re mov als, one at a time. Could you ap ply the very same
strat egy to eval u ate the im por tance of vari ables in or di na tions as well? 
A: This looks a rea son able sug ges tion. An or der ing of vari ables based on their in flu ence upon
a par tic u lar re sult could be achieved, for ex am ple, by com par ing a ref er ence or di na tion (the
one based on all the vari ables) to the oth ers, each of which ob tained by de let ing a sin gle vari -
able. If the sim i lar ity to the ref er ence or di na tion is high, then the vari able is less im por tant, be -
cause af ter its omis sion from the data al most the same re sult is re pro duced. One the other
hand, if the re moval of a vari able de creases the sim i lar ity to the ref er ence or di na tion con sid er -
ably, then it was es sen tial in af fect ing the con fig u ra tion. The cru cial step in this pro ce dure is
the way sim i lar ity of or di na tions is as sessed and I rec om mend to wait with this un til the rel e -
vant meth ods are treated in the next chap ter. 
Q: If it is true, then you con tra dict your self! On the an a logue of the above prop o si tion, the
global in flu ence of vari ables upon dendrograms is also a mea sur able quan tity, con trary your
state ment in Sec tion 1 where you in sist that the ef fect of vari ables should be eval u ated level by
level in a hi er ar chy. 
A: This is a very good point I did not think of ear lier! I agree that the ref er ence dendrogram
could be com pared with n other dendrograms, each gen er ated by the re moval of a given vari -
able. Then, the rank or der of vari ables is ob tained ac cord ing to these n pairwise sim i lar i ties.
And there are plenty of meth ods for the com par i son of dendrograms, as you will see in the
next chap ter. Of course, this pro ce dure is time-consuming if n is high and this ex plains that, as
far as I know, no body has ever at tempted to do such eval u a tions. Good idea for a mas ter’s the -
sis, for ex am ple!
Q: Why do you re ject con cen tra tion anal y sis if the data are not of the bi nary type?
A: In prin ci ple, the anal y sis has the same as sump tions about the start ing data as cor re spon -
dence anal y sis or, in gen eral, the  2-sta tis tic.  Namely, the data must be pres ences and ab -
sences, or fre quen cies. For other kinds of data, this func tion is sim ply mean ing less. The
block-clustering pro gram will run with any data type and pro vide mean ing ful re sult, but sub -
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se quent cor re spon dence anal y sis of blocks, again, is not rec om mended at all if the above men -
tioned con di tions are not sat is fied.
Q: I sus pect that the trav el ing sales man al go rithm you men tioned is not much faster than com -
plete enu mer a tion (ex haus tive search of all pos si bil i ties).
A: If you wish, we can check... Af ter se lect ing a given row, the other n-1 rows may be as -
signed to two po si tions, and then there are three places for n-2 rows, and so on un til only one
row re mains for which we have ex actly n pos si bil i ties. These terms sum up, and this sum must
be mul ti plied by n be cause all the rows may be pivot el e ments. Af ter do ing the same for the
col umns, you can add the two sums to get the to tal num ber of steps nec es sary to com plete the
anal y sis: 

n i n i m j m j
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n
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1 1( ) ( ) .                                                                 (8.12)

This sum is cer tainly less than the num ber of pos si ble or der ings. For n = 8 and m = 7, we have
that n!m!/4 = 50 803 200, whereas quan tity 8.12 equals only  1275. This suf fi ciently il lus trates 
that the trav el ing sales man al go rithm ex am ines a small frac tion of the pos si ble ar range ments
and there fore it has a high chance to miss the global op ti mum. For real prob lems, such as  n =
100 and m = 80, the dif fer ence be tween com plete enu mer a tion and heu ris tic search is even
more dras ti cally dif fer ent.  
Q: How about the or der of im por tance of ob jects in seriation? You did not men tion that such a 
rank ing is pos si ble to as sess how the in di vid ual ob jects sup port a given re ar range ment.
A: Yes, I sim ply for got it... How ever, by look ing at For mulae 8.10 and 8.11 one sees im me di -
ately that the con tri bu tion of any row or col umn to  is readily ob tained and then rank ing is a
mat ter of ar rang ing these val ues into de scend ing or der. 
Q: Col or ing and shad ing dis tance and data ma tri ces are ar tis tic ac tiv i ties in my opin ion, even 
though the com puter does these for us. I think, Piet Mondrian would ac cept some di a grams as
rep re sen ta tives of his school. I heard of col ored graphs as well and I would like to know if they 
are also in ter est ing for the bi ol o gist.
A: Colored graphs pro vide fur ther means of dis clos ing hid den in for ma tion in the data. Sim i -
larly to tab u lar re ar range ment, their in ter pre ta tion does not re quire much math e mat i cal back -
ground. In col ored graphs, termed plexus graphs in ecol ogy,  the ver ti ces rep re sent the study
ob jects or vari ables (spe cies). The edges or lines of the graph are col ored or are drawn with
dif fer ent thick ness de pend ing on the dis tance, sim i lar ity or cor re la tion be tween the ob jects
they rep re sent. By con ven tion, in creas ing sim i lar i ties are vi su al ized by thicker or darker
edges.  A plexus graph is there fore an al ter na tive to shaded  nn or mm ma tri ces and it is not
sur pris ing that McIntosh (1978) dis cussed both groups of meth ods in the same re view.  The
plexus di a gram is easy to draw for a few points (Fig. 8.10a), but as the num ber of ver ti ces in -
creases, the prob lem of their ef fi cient ar range ment on the plane be comes more com pli cated.
Two-dimensional or di na tions do help in this re gard (e.g., Matthews 1978, Matus &
Tóthmérész 1990). Fig ure 8.10b is the plexus graph for the Eu ro pean cit ies drawn us ing their
or di na tion shown in Fig. 7.18. As you see, many edges are miss ing from the graph: in fact,
large dis tances are vi su al ized by de lib er ately de let ing the edges per tain ing to them. The
plexus method is a use ful aux il iary tool for eval u at ing or di na tion di a grams, as dem on strated
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by Whittaker (1987), Moskát (1991) and Dale (2000). This fi nal note leads us di rectly to the
eval u a tion and com par i son of re sults, the last big topic to be dis cussed in this book (see the
sec tion on the com par i son of re sults of the dif fer ent type in the next chap ter). 
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Fig ure 8.10. Plexus graphs from the ma trix of im mu no log i cal dis tances of mam mals (a) and from the
dis tance ma trix A5 of Eu ro pean cit ies (b). The dis tance val ues are ar bi trarily cat e go rized in both di a -
grams, but in prac tice the edges are usu ally col ored ac cord ing to for mal sig nif i cance lev els (when
avail able, as is for 2 and cor re la tion).


