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Ordination

(The ‘art’ of efficient reduction of dimensionality)

As mentioned in Section 2.1, any conventional data matrix has two alternative geometric rep-
resentations: the objects are points in a space spanned by variables as axes and vice versa, the
variables are points in a space with the objects as axes. Section 2.2 already introduced some
simple graphical means designed to allow simple examination of these data structures. The
methods described in Chapters 4-6 also operate in these multidimensional spaces, with the ex-
plicit purpose of arranging the points into groups or graph structures such that reduction of
dimensionality is only indirectly present. It is left to the present chapter to introduce proce-
dures whose primary objective is to replace original dimensions by a few artificial axes so as
to represent data structure as efficiently and faithfully as possible. After Goodall (1954), these
methods will be discussed under the common heading of ordination, although they do not
form a mathematically homogeneous category (for example, ‘scaling’ refers to a subset of or-
dination procedures with the specific purpose of ‘expanding’ distance matrices backwards
into a new artificial ‘data space’). For the majority of methods, the objects studied belong to
the same group, but this is not necessarily so. Discriminant analysis, as a special ordination
technique, derives new axes in order to maximize separation among groups of objects defined
a priori. In addition, variables may also be grouped into two classes on strict logical grounds
before the computations, a separation considered important in reducing dimensionality
through canonical correlation and canonical correspondence analysis. As seen, ordination is
understood in a much wider sense than usual: any technique that extracts artificial variables

in order to reduce the dimensionality of the data is referred to as ordination. These variables
are termed differently for each technique, for example, component, factor, canonical variate
and so on.

Whereas in cladistics the greatest intellectual demand is to understand many, potentially

new or ambiguous terms, the methodology of ordination assumes knowledge of elementary

matrix algebra. Without familiarity with the fundamentals, even a most simplified description

of ordination algorithms will be difficult or even impossible to follow. Nevertheless, I will try

to present an intuitive characterization (with the aid of graphic displays, assuming again that

the reader is a visual type mentally) before giving the mathematical details of each technique.
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Going deeply into the subject is inevitable for those wishing to make an appropriate choice of

methods, thus avoiding the pitfall of applying the actually ‘most popular’ ordination proce-

dure and program to any research problem. In a sharp contrast with clustering, some initial

conditions must be satisfied by the data
1
, otherwise the interpretation of ordination results can

easily lead to false conclusions.

7.1 A fundamental ordination method: principal components analysis

Principal components analysis (generally abbreviated as PCA2) is as central a procedure of
multivariate data exploration as the analysis of variance in conventional biometry. Its detailed
discussion is prerequisite to the treatment of any other ordination procedure. The method has
been rooted in the pioneering works by Pearson (1901) and – in particular – Hotelling (1933,
1936). PCA had remained only of theoretical significance for decades, but the development of
high-speed computers abruptly interrupted the dream of this ‘Sleeping Beauty’ in the sixties.

The underlying principle of the method can be introduced in several ways (cf. Mirkin

1996); a graphical approach is perhaps the most appropriate here. Figure 7.1a depicts a very

simple situation, since the original dimensionality of the point cloud is only two – chosen that

way deliberately for didactic reasons. In reality, the number of dimensions to be explored is

much higher of course. Observe that the two variables (axes x1 and x2) explain approximately

the same portion of the total variance for the ten points (Equation 3.108). However, if a new

axis is laid down so as to coincide with the longitudinal axis of the cloud (longer dotted line in

the figure) then this axis will account for almost all of the variance (the meaningful variation),

whereas the other new axis, perpendicular to the previous one, explains a tiny fraction only

(the stochastic variation or noise in the data). These axes, drawn by hand for the time being,

are called the components.

To sum up what has been said: without modifying the relative positions of the points the

original coordinate system is replaced by a new one such that the first new axis encompasses

the maximum variation, leaving as little as possible for the second axis. The logic is the same

for any number of starting variables, because every subsequent axis is derived to explain the

highest percentage of variance remained after determining the previous axes. At this point, we

must admit that the number of components is not necessarily smaller than the number of origi-

nal variables – rearranging the shares in total variance does not imply automatic reduction of

dimensionality (the maximum number of components that can be obtained is discussed on p.

220). The real achievement here is that a few components will summarize most of the varia-

tion, and the majority of the new artificial variables will be negligible and can be discarded.

This is what we mean by dimension reduction. The efficiency of this operation is of course

case dependent, the stonger the linear correlations (Equation 3.70) between the variables, the

fewer axes will be necessary to explain the meaningful linear variation in the data. If there is

little or no correlation among the original variables, then PCA will not add anything new to the
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2 An alternative is Digby & Kempton (1987) who prefer the acronym PCP. Universality is not a requirement, of

course, and it is more essential that authors use the abbreviations consistently in the whole book or paper.



picture, the only thing that happens is that the coordinate system is shifted to the centroid (Fig.

7.1b). This is because there are no particular ‘directions’ in the point cloud to which compo-

nents could be fitted efficiently. The success of PCA is therefore conditioned upon strong lin-

ear correlations of the variables, a criterion often satisfied by biological data. A byproduct of

using PCA is the identification of groups of highly correlated variables, as we shall see below.

First, it is shown that the new coordinates of objects can be derived based on the original
coordinates and the angles between components and original axes. What the reader needs is
merely a high-school level background in planar geometry. In Figure 7.1c, the original vari-
ables are x1 and x2, whereas the components are denoted by y1 and y2. For the sake of clarity,
only a single object is represented in the diagram, by point P, the others are removed. � is the
angle between variables x1 and component y1. In the first step, the data are centered (Formula
2.2), that is, from each value the mean of the given variable is subtracted. As a result, the ori-
gin O (the intersection of axes x�1 and x�2) of the new coordinate system will be shifted to the
centroid of the point cloud. Let the centered coordiantes of point P be x�1P and x�2P, that is

x x x x x xP P P P� � � � � �1 1 1 2 2 2, and (7.1)

The coordinates for point P on the new axes are obtained using the line segments OA and AB,
as well as OC and CD, following elementary trigonometry:
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Figure 7.1. Graphical il-
lustration of principal com-
ponents analysis. a: vari-
ance-extraction is efficient
for highly correlated vari-
ables; b: the components
do not help much when the
variables are linearly
uncorrelated; c: diagram
showing the calculation of
coordinates for point P in
the component space.
(Note that y1P and B refer
to the same point, as well
as y2P and D.)



y x xP P P1 1 2� � � � �OA + AB cos sin� � (7.2a)

y x xP P P2 1 2� � � � � � �OC + CD sin cos� � (7.2b)

Since sin � = cos (90o – �), and (90o – �) is the angle between the second variable and the
first component, the above equations can be rewritten using the cosine function exclusively:

y x xP P

o

P1 1 290� � � � �cos cos ( )� � (7.3a)

y x xP

o

P P2 1 290� � � � � �cos ( ) cos� � (7.3b)

In words, the coordinate of P on component y1 is derived as the sum of P’s coordinate on axis
x�1 multiplied by the cosine of the angle between x1 and y1 and its coordinate on axis x�2 mul-
tiplied by the cosine of the angle between x2 and y1. That is, the centred data and the angles
are required. The new coordinates are called the component scores. In matrix algebraic terms,
the above equations can be rewritten as:

y V (x - x)� �
�

�
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(7.4)

Matrix V is therefore a rotating matrix which moves the point P into a new coordinate system.
The column h of the matrix contains the cosines of the angles between the original variables
and component h (‘direction cosines’), so that the matrix algebraic analogue 7.4 of 7.3 is
achieved using the transpose of V. Matrix V satisfies the equation V�V = I, the condition for
the orthonormality of its columns (that is, the components are orthogonal to each other, see
Appendix C).

The ‘only’ thing that remained is the calculation of the matrix of direction cosines. Matrix
V in fact converts the original covariances and variances into 0 covariances (corresponding to
zero correlations between components) and the ‘rearranged’ variance shares, according to the
following equation:

V C V L� � , (7.5)

in which C is the variance/covariance matrix of variables, and L is the variance-covariance
matrix of the components. In the latter, because the covariances are zero, only the diagonal
scores assume positive values, so that L is a diagonal matrix. These values will be denoted by
�h. The column vector vh and its associated variance �h satisfy the following matrix equa-
tion:

( )C I v 0� ��h h . (7.6)

To solve the equation we assume that

| |C I� ��h 0 . (7.7)

Expansion of the determinant yields several solutions (roots) for �h (see below), each associ-
ated with a vector vh, such that vh�vh = vih

i

2
 �1 (the length of the vector is 1, otherwise we
do not get direction cosines). Given this condition and the diagonal values of L, Equation 7.6
directly provides the column vectors vh of matrix V. The � values are called the eigenvalues,
the v vectors are termed the eigenvectors of C (see Appendix C).

The above derivation is illustrated by a small numerical example. Consider the two vari-
ables depicted in Figure 7.1a, which provide the following coordinates for the ten points:

variable 1: 1 1 3 3 5 5 7 7 9 9
variable 2: 1 3 3 5 5 7 7 9 9 11

The variance-covariance matrix for the two variables is given by:

C �
�

�
�
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8 89

8 89

8 89

10 0

.

.

.

.
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(the variance of variable 1 happens to be equal to the covariance of the two variables by acci-
dence). First, we solve Equation 7.7 by writing

C I� �
�

�
�
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Since the determinant of a 2 � 2 matrix is

a c

b d
ad bc

�

�
� �

�
�� � ,

we obtain that

( . ) ( . ) . . .8 89 10 0 8 89 18 89 9 87 02 2� � � � � � �� � � � ,

with the two roots �1 = 18.35 and �2 = 0.54.

At this point we should pay attention to an important observation. Whereas the variances
of the two variables were 8.89 and 10.0, respectively, that is their share from the total vari-
ance is similar (47% compared to 53%), the new variances are considerably different from
each other. The variance of 18.35 obtained for the first component accounts for 97% of the to-
tal, leaving a tiny fraction of 3% to the second component. Thus, in this case variance ‘com-
pression’ is very efficient. The sum of the eigenvalues equals the total variance, which is the
sum of diagonal values in C (the trace of the matrix). The relative importance of an
eigenvalue �h is therefore ��� � �h / tr{C} percent. Note also that the product of the
eigenvalues (in this case: 9.9) equals the determinant of the variance/covariance matrix (10 �
8.89 – 8.892), a quantity often called the generalized variance.

Having determined the eigenvalues, the eigenvectors are easily obtained. By omitting the
details of calculation, we get the following rotating matrix for the two eigenvalues derived
above, satisfying the condition of unit vector length:

V V�
��
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For example, the new coordinates of point 4 are obtained by Equations 7.3a-b, using the two
means (5 and 6) of the variables as follows

y14 = 0.685 (3 – 5) + 0.729 (5 – 6) = –2.099
y24 = – 0.729 (3 – 5) + 0.685 (5 – 6) = 0.773

The result is easily verified by examining Figure 7.1a. If one wishes to check its correctness
by a commercial package as well, and finds that the signs of component scores differ from the
above, then it does not mean that the calculations are wrong. The signs are absolutely arbi-
trary, the whole configuration may be reflected over the axes. Note also that the vectors of V
are normalized in both directions (the sum of squared elements is 1). That is, not only the
eigenvectors have unit length, but the sum of squared direction cosines for a given variable is
also unity:

h

ihv
 �2 1. In other words, the condition of orthonormality satisfies for the rows as
well: VV�= I.

The above two-variable example serves the purpose of illustration of what is going on during

calculations in PCA. The worked example can be expanded to more than two variables, but the

calculations are better performed by the computer. A usual definition of PCA (e.g., Manly 1986) is

that the components are linear combinations of the variables, as shown by Equations 7.3, given the

conditions of orthonormality. In addition, PCA is also considered as a generalization of regression

analysis using minimum sum of squares (Jongman et al. 1987). Component 1 was laid down in
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Fig. 7.1a such that the sum of squared distances of the points from the line was minimized. The an-

gle between the component and any original variable can be computed by iterations, thus circum-

venting the use of determinants and eigenvalues.

The possible number of components is an interesting issue in ordination theory. The solu-

tion of Equation 7.7 provides t positive eigenvalues with the following restrictions:

t � min { n, m – 1 } (7.8)

where, as everywhere in this book, n is the number of variables and m is the number of points
(objects). This inequality implies that no more than n components can be extracted from the
data when there are more points than variables. The number of components can be lower than
this when some variable(s) can be expressed as linear combinations of the others, i.e., some
function describes their relationship (its simplest case is a unit correlation between two vari-
ables). If m–1 < n, then this inequality becomes decisive because, in some sense, the many
variables ‘overdefine’ the small number of points. It is known from multidimensional geome-
try that we need a maximum of m–1 dimensions in order to depict the distance relationships
for m objects (the distance for two points is measured correctly along the line, in one dimen-
sion; the Euclidean distances between three points are faithfully represented on the plane, in
two dimensions, and so on...). The number of positive eigenvalues, t, is termed the rank of ma-
trix C; it is in fact the background or inherent dimensionality of the data structure (Appendix
C).

A natural question arises immediately in every user of principal components analysis:
what is the number of potentially ‘meaningful‘ dimensions that need to be demonstrated, and
how many dimensions explain only stochastic variations in the data and can therefore be ig-
nored? There are several possibilities to examine this problem. If the egivenvalues are ranked,
then the relative importance of dimensions becomes interpretable. The simplest graphical ve-
hicle to illustrate this is the so-called scree diagram (Cattell 1966, see inset in Fig. 7.2). Ac-
cording to the original proposition, a breakpoint from which the eigenvalues start to decrease
very slowly is identified in this bar diagram. Dimensions pertaining to the eigenvalues before
this point are deemed to be ‘important’, contrary to the others. This subjective rule of thumb
may work in some cases, but cannot be recommended as a general solution. The Kaiser crite-
rion (Mardia et al. 1979) selects components that exceed the mean of all eigenvalues. The use
of this criterion usually provides fewer ‘meaningful’ dimensions than the scree diagram. Sta-
tistical tests of the significance of PCA axes are also possible. More conventional formula-
tions require the multivariate normality of the data; if this condition holds true then Bartlett’s
isotropy test may be used to find the breakpoint (Mardia et al. 1979). More advanced tech-
niques based on bootstrap tests do not assume normality of data and thus have more general
validity (Jackson 1993, Pillar 1999b).

Principal components analysis is illustrated first using the phytosoiological data of Table
A1 (Appendix A). In this, eight sample plots are characterized in terms of percentage cover
scores of 12 plant species (variables). The efficiency of variance extraction is clear from the
results: the first two components (Fig. 7.2) account for 82% of the total variance (55% and
27%, respectively), leaving only 18% to the remaining five components (there are 7 positive
eigenvalues; refer to the discussion on top of this page to see why). Plots taken in open grass-
lands are relatively close to one another in the scatter diagram, whereas the more closed com-
munity stands, represented by plots 7 and 8, are positioned far apart, illustrating pretty well
the quantitative differences in species cover data. The scattergram agrees well with the hierar-
chical classification of objects which is superimposed onto the ordination via concentric lines
drawn around the groups.
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7.1.1 Component-covariance and correlation: ordination of variables

An advantage of PCA is that in addition to portraying the multidimensional scatter of objects
via efficient variance extraction, the relationships among variables can also be evaluated thor-
oughly. Based on the component scores and the original data, Formula 3.69 could be used to
yield the covariance between components and variables, allowing interpretation of compo-
nents in the context of the actual study. The formula of covariance is not needed, however, be-
cause from Equation 7.6 we have that

Cv v� � , (7.9)

in which �h ihv corresponds with the covariance of variable i and component h. Standardizing
this covariance by the standard deviation of the variable (si) and the component (the
eigenvalue is its variance, so that the standard deviation is its square root, �h ) provides the

so-called component correlation sought:

r v s v sih h ih i h ih h i� �� � � (7.10)

(an alternative term is component ‘loading’). The component covariances and correlations
can be used to draw an ordination diagram of variables. In this, the axes are the components as
above, and the points represent the variables. As yet, between-variable relationships were ex-
pressed in terms of covariances, so it is absolutely logical to measure component/variable re-
lationships in the same way. That is, the coordinate of variable i on axis h will be given by
�h ihv , a value without theoretical upper limit. The use of correlation is also plausible, but its
interpretation is more straightforward for the case of standardized PCA (Subsection 7.1.4). It
is noted here that in case of correlation the coordinates will fall into the interval [–1,1]. Owing
to the orthogonality of axes, the correlations between a given variable and the first two com-
ponents are constrained to fall within the unit circle drawn around the origin (for all compo-
nents, the point representing a variable will lay on the surface of the unit radius hypersphere,
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Figure 7.2. PCA ordina-
tion of phytosociological
relevés of Table A1. The
intersection of axes is
moved to the lower left
corner to improve clarity
of the diagram (a conven-
tion to be followed
throughout in this book).
Contour lines represent
different steps of a hierar-
chical classification from
Euclidean distances. The
scree diagram (inset) de-
picts the relative sizes of
eigenvalues.
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 � ). Note, further, that in the ordination space rih is the cosine of the angle be-

tween component h and the vector that represents variable i.

The alternative PCAs, one based on component covariances and the other on correlations,
of species in Table A1 deserve a comparison. In Fig. 7.3, the variables (species) are arranged
according to component-covariances. As seen, the components are determined primarily by
species that have a high cover value in at least one site, thus large variance in the data set: the
first axis is determined by Sesleria and the second by Bromus. Three less varying species,
namely Seseli leucospermum, Festuca glauca and Chrysopogon gryllus, represent a tendency
opposed to the first two, whereas the species with even lower cover are concentrated around
the origin. When correlation is used, these absolute cover differences diminish and – as a re-
sult – the points become more evenly scattered in the ordination space (Fig. 7.4). Component
1 is positively correlated with the species typical of closed grasslands, and negatively with
species of open areas. This is the strongest contrast, the main trend, that can be deduced from
this extremely simple data table. Bromus erectus apparently ‘strives for’ independence from
the other species, because it is present everywhere with small or high cover. This behavior is
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Figure 7.3. The ordination of species of Table
A1 based on component covariances. The la-
bels are centered on ordination positions. Sev-
eral labels overlap around the origin, these
indicate species with low variance in the data
set.

Figure 7.4. PCA ordination of species of Table
A1 based on component correlations. Labels
are centered on species positions. Compare this
diagram with Fig. 7.3!



reflected by the high correlation with component 2. Species falling close to the origin
(Koeleria glauca, Scabiosa canescens, Centaurea sadleriana) are the most independent from
the other species, and their role is negligible in determining data structure. In general, one
might say that the closer a point of a variable to the unit circle, the more completely it is ex-
plained by the given two components in terms of correlation structures.

7.1.2 Percentage contributions

When evaluating the role of a component in explaining the variance of an object or a variable,
graphical display is not the only possibility; the relationships can also be expressed quantita-
tively. The percentage contribution of component h to the ‘variance’ of object k (more pre-
cisely, to the sum of its squared deviations from the origin) is given by the following formula:

z y yhk hk

j

t

jk� �
�

100 2

1

2 (7.11)

where yhk is the score of object k on component h. Using the percentages, one may determine
how many components are responsible for the position of any point, components affecting a
few or no objects can be identified, and objects with an ‘average’ behavior can be found. The
proportion of variance of variable i accounted for by component h is obtained as:

w v vhi ih h

j

t

ji j� �
�

100 2

1

2� � (7.12)

If variable i is highly correlated with component h, then the percentage will also be high, leav-
ing a small fraction to the remaining components. Variables with high component correlations
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Table 7.1. Percentage contributions of the first five components to the variance of sites and species in
the PCA of Table A1. The highest score in each row is set by boldface.

Sites Components and their % contributions
1 (55%) 2 (27%) 3 (12%) 4 (4%) 5 (1.5%)

1 32.788 20.828 39.445 6.354 0.575
2 49.861 6.096 0.196 0.723 42.499
3 7.354 63.758 12.651 13.412 2.024
4 33.613 12.784 38.315 5.207 6.086
5 41.815 30.638 1.654 25.245 0.035
6 9.825 0.455 82.130 6.476 0.006
7 1.258 92.687 5.169 0.872 0
8 96.230 3.636 0.134 0 0

species
BRO ERE 4.488 83.167 11.594 0.351 0.028
CAM SIB 19.279 42.352 10.104 3.185 18.178

CAR HUM 85.061 1.790 11.184 0.361 0.460
CAR LIP 30.611 23.965 3.248 8.452 17.107
CEN SAD 19.884 5.256 7073 6.169 13.545
CHR GRY 15.597 12.942 48.084 23.269 0.108
FES PAL 39.173 23.352 16.754 19.037 1.473
FUM PRO 20.446 0.968 42.720 1.465 26.912
KOE CRI 6.194 0.099 67.650 17.206 7.508

SCAN CAN 26.722 1.818 2.256 0.417 63.037

SES LEU 31.618 32.224 28.702 5.829 1.436
SES SAD 94.276 4.752 0.925 0.038 0.003



are the most important in the interpretation of PCA results. On the other hand, if the variance
contributions are evenly distributed over components, then the variable usually has very little
meaning, and can be discarded safely from any interpreta t i o n .

It is left to the reader to compare the percentages presented in Table 7.1 and Figures 7.2-3.
It turns out that components that were ignored thus far may prove to be important in explain-
ing some sites and species. For example, most of the variation of Scabiosa canescens is ac-
counted for by component 5, showing the individualistic behavior of the species (it can have
small or medium cover in closed and open stands alike). Its overall effect is nevertheless neg-
ligible, because component 5 explains no more than 1.5% of the total variance.

7.1.3 Simultaneous ordination of objects and variables: the biplot

The comparative evaluation of the separate ordinations of objects and variables is cumber-
some, especially for many points, raising the need for some combination of the two configura-
tions. Gabriel (1971, 1981) proposed first a method to derive a joint display of objects and
variables, incorporating all essential information on data structure in a single diagram, called
the biplot. (In this term, the prefix bi- refers to the number of ordinations combined, rather
than to the number of dimensions!) Since the coordinates of objects and variables are ex-
pressed on different scales, the variable scores are to be multiplied by an appropriate factor to
allow superposition of the two ordinations. As a further aid to subsequent interpretation, ar-
rows are directed from the origin towards the points representing variables, so that the rela-
tionships between components and variables become more apparent.

There are several ways of defining biplot coordinates. In the original proposition by Ga-

briel, the biplot is not merely a superposition of two configurations, but also a tool of an opti-

mum reconstruction of original data from the components – whose success is always case

dependent. In the Gabriel biplot, the coordinates of objects are determined as described above,

whereas the coordinates of variables are provided by the respective values of the eigenvectors

(i.e., the direction cosines), multiplied by an arbitrary scale factor. For this type of diagrams,

ter Braak (1983) suggests the name Euclidean biplot, because in this case the interpoint dis-

tances in the ordination, multiplied by the scale factor, give the best approximation to the orig-

inal distances of objects. The higher the coincidence between a component and a variable in

the multidimensional space, the smaller the angle between the corresponding axis and arrow

in the biplot diagram.

The Euclidean biplot derived from the PCA of Table A1 is displayed in Fig. 7.5. Species
with low cover, hence with low variance, are concentrated around the origin so that their la-
bels overlap and are therefore unreadable. The relative positions of species are similar to those
in the covariance-based ordination (Fig. 7.3). Consequently, Bromus, Sesleria and Seseli have
the strongest impact upon the configuration.

The reconstruction of original data, i.e., approximation of species abundances in the above

example, is achieved in the following way. By projecting point j onto the arrow (or its exten-

sion) of species i, one obtains the so-called fitted score of that site. The fitted score is an ‘esti-

mated’ cover of species i in site j. When the fitted score is positive, the given species is

expected to have a larger abundance in the site than the average, if negative, the abundance is

lower than the average (recall that the data were centered before the analysis). The larger the

variance explained by the two axes in question, the more efficient this approximation. (In any
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case, the best fit is always obtained for the first two components, see Appendix C: singular

value decomposition [expression C50, in which US stands for the coordinates of objects and

V� contains the eigenvectors]).

To illustrate this, let us extend in the diagram of Fig. 7.5 the arrow pointing to Bromus be-
yond the origin, in a ‘negative’ or backward direction, and project each point to this line.
Then, we see that in sites 1, 2, 4, 5 and 6 this species has a cover below the average (11.5)
such that the fitted score approximates pretty well the original value. For site 8, this recon-
struction is a bit less successful, because it is in positive domain although the original value is
11 only. Points 3 and 7 are far over the average, in good agreement with the abundance of
Bromus in these two sites.

Another possibility is the so-called Mahalanobis biplot, for which the coordinates of ob-

jects are recalculated according to u y mhi hi h� � �� ( )1 . As a result of this transforma-

tion, the variances on the components will be equalized, because the vectors of coordinates

will have a unit length. (What we have derived is an element of the left matrix obtained from

the singular decomposition of the data matrix, see Formula C50 in Appendix C). Interpoint

distances for all components correspond to the Mahalanobis generalized distances of objects,

that is, we have the best possible two dimensional approximation to these distances in the

space of the first two components. In the biplot, the coordinates of variables are the compo-

nent covariances (Formula 7.9), the length of arrows is proportional to the standard deviation

of the variable, and the angles between any pair of arrows are proportional to the correlation

between the corresponding variables. If we look at the formula of singular value decomposi-

tion in Appendix C, we realize that the data may be reconstructed from the ordination scores
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Figure 7.5. Euclidean bi-
plot: the species are proj-
ected onto the ordination of
sites (Fig. 7.2) according
the the eigenvector scores
(direction cosines) as coor-
dinates multiplied by the ar-
bitrary factor of 67.05.



(U contains the coordinates of objects, whereas SV � includes coordinates of variables in For-

mula C50).

A natural question may immediately arise in the reader: in preparing a biplot why do not

we superimpose the ordination of objects which approximates their Euclidean distances (this

one from the Euclidean biplot, Fig. 7.2) onto an ordination of variables based on component

covariances (from the Mahalanobis biplot, Fig. 7.3)? It is of course a straightforward possibil-

ity, and the resulting diagram is a suggestive joint display of objects and variables (as an illus-

tration, see Fig. 7.6c for a different version of PCA). Many authors do not consider this as a

true biplot because it is not suitable to the reconstruction (more precisely, to the approxima-

tion) of original data. Nevertheless, Rohlf (in Marcus 1993) treats this as a reasonable alterna-

tive to the former biplot types, implicitly expressing the view that a biplot need not always be a

tool of optimal data reconstruction. I share his views, because the other objective of joint dis-

plays, the facilitation of the mutual interpretation of two configurations is equally if not more

important in biological data analysis. Often, the Euclidean and Rohlf biplots do not differ sig-

nificantly because the ordinations of variables by eigenvectors and component covariances

are similar, as are in the present example.

7.1.4 Standardized PCA

The previous subsections introduced the ‘regular’ version of principal components analysis
which implies centring of the original data, hence its usual name, centred PCA. We under-
stood from the sample results that the positions of the first components were determined
mostly by variables with high variance, on account of variables with low or negligible vari-
ance; there was an unequal implicit weighting in the analysis. However, the user of this
method may want to give equal weight to all variables, for example, when all species are to be
considered equal in importance irrespective of the absolute cover values. Whenever the input
variables are measured in different measurement scales, equalization becomes ‘obligatory’;
otherwise the results will reflect little more than our arbitrary choices of measurement scales
and units. Equalization is achieved by standardizing the variables by Formula 2.4; in addition
to centring each score is divided by the standard deviation of the corresponding variable. In ef-
fect, the multidimensional shape of the point cloud is changed – but our search for optimum
directions will still make sense for the researcher.

This standardized PCA differs from the centred version in the following features:

� The analysis starts from the R correlation matrix of variables, rather than the matrix C

of variances/covariances. Computing R implies the required standardization, so that
the data need not be divided by standard deviation in advance.

� Standardization has the obvious consequence that all variables will have unit vari-
ance, therefore the total variance is n, just like the sum of eigenvalues. The percentage

share of component h in the total variance is thus 100 � �h/n.

� Components with variance (eigenvalue) lower than 1 may be discarded safely from
the interpretation of PCA results. A component conveys no information for us in this
case, because its variance is lower than the variance of any standardized variable.
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� The correlation of component h and variable i is obtained by the simplified formula
r vih ih h� � , and in fact equals the component covariance. Therefore, it may be used

to construct the Rohlf biplot.

The balanced effect of variables upon the result is shown by the standardized PCA of the
data in Table A1 (Fig. 7.6). The first two components explain ‘only’ 63%, in contrast with
82% reached by centred PCA. The positions of sites also changed, of course; objects 7 and 8
fall closer to each other, because the discriminatory power of Bromus and Sesleria, the two
variables mainly responsible for their separation, is diminished. On the contrary, sites 1 and 5
fall further apart, because their small absolute differences are exaggerated by standardization
(Fig. 7.6a). Component 1 appears to reflect a contrast between open and closed stands of the
grassland. Standardization influences the grouping of species as well; in accordance with the
open versus closed trend, there are two groups of species (Fig. 7.6b). The separation of
Fumana reflects its ‘individualistic’ behavior among the species. The slight differences be-
tween the Rohlf (Fig. 7.6c) and Euclidean (Fig. 7.6d) biplots are caused by the multiplier �h

used in the former case (see the last item in the bulleted paragraphs above).

In a phytosociological study, it is up to the researcher to decide whether or not to use data
standardization. In taxonomic studies, however, meaningful ordinations are obtained by stan-
dardized PCA only. This is the case for the Iris data set (Table A2) as well, because the length
values are about three times larger than the width scores. The analysis shows that while the
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Figure 7.6. Standardized PCA of the phytosociological data in Table A1. a: ordination of sites, b: or-
dination of species based on component correlations, c: Rohlf biplot using the correlations, d: Euclid-
ean biplot.



width and length of petals are almost ‘perfectly’ correlated, measurements for the petals are
uncorrelated (the corresponding arrows are at right angle in Fig. 7.7, compare this with Fig.
2.3). The first component is practically an overall size component for the petals, whereas the
second component can be identified with sepal width (we have seen from the data that the pet-
als of I. setosa are much smaller than the other two species). These two components account
for 73% and 23% of the total variance, respectively, that is, almost everything. While compo-
nent 1 appears to separate the species well, the second is not suitable to this purpose (the sepa-
ration of these taxa will be examined once more using canonical variates analysis in
Subsection 7.2.1).

7.1.5 Non-centred PCA

Principal component analyses starting from covariance and correlation matrices agree in that
the data are centred and, as a consequence, the components intersect in the centroid of the
original point swarm. However, centring is not absolutely necessary; PCA can also start from
the cross product matrix K of the variables (Expression 3.68). This version is termed
non-centred PCA in the literature3. The short list below will summarize its basic features:

� Non-centring implies that the components are forced to go through the origin of the
axes of the raw data space. As a result of this constraint, the components are usually
not orthogonal, and their correlations may considerably differ from zero.

� The amount of variability explained by a given axis is measured by the sum of squared

deviations of points from the origin on that axis, rather than by variance. For the sum
of eigenvalues, we have the following relationship:
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Figure 7.7. Rohlf biplot
derived from the stan-
dardized PCA of Iris data
of Table A2. Symbols: 	:
I. setosa, +: I. versicolor,
o: I. virginica. Abbrevia-
tions: S: sepal, P: petal,
L: length, W: width.

3 In fact, there is a fourth combination of data manipulations in PCA, when non-centring is combined with
division by standard deviation. This version is perhaps the least important in our practice, and is not treated here. .
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Thus, the quantity 100��h / tr{K} will be the percentage of the total sum of squares
(the sum of diagonal values of K) falling to component h.

� Since the eigenvalues are interpreted in terms of sum of squares, the component corre-
lations can only be obtained by direct calculations using Formula 3.70, that is, by
comparing the original variables with the component scores. A biplot can also be
drawn, but its interpretation is less obvious, mostly because the axes are not orthogo-
nal.

When looking at the above list, one may ask somewhat precariously: is there any specific
question that may be addressed by non-centred PCA only? As we have said, the essence of the
approach is the maximization of sum of squared deviations from the origin on each axis. This
fact may be utilized in explaining the ordination of ecological sampling units (quadrats, plots)
as follows. The more dominant are some species on account of the others in a plot, that is, the
lower the diversity, the larger the sum of squares pertaining to this plot (that is, sum of squares
is inversely proportional to the Simpson diversity). As a reflection to this, in non-centred PCA
ordinations the plots with low diversity (high deviations) will fall far apart from the origin,
whereas those with high diversity (lower deviations) will concentrate near the origin. This
gives an immediate possibility for interpretation in terms of diversity (Carleton 1980, ter
Braak 1983, Digby & Kempton 1987). However, our conclusions are correct only if the data
comprise percentage cover or, preferably, relative dominance scores (standardization by the
sum of each object, Formula 2.20). Raw adundances cannot be used directly, because the total
number of individuals can differ remarkably over plots. Another potential utility of
non-centred PCA is its sensitivity to the grouping of objects. When there is a clear-cut group
structure in the data, each component will have high scores for one group only, while the
scores of the members of the other groups will be low (Pielou 1984). As a confirmation, it is
always advisable to compare non-centred ordinations with distance-based classifications.

Let us examine the results of the non-centred PCA of Table A1. In the ordination of ob-
jects (Fig. 7.8), site 6 is the closest to the origin because it has the most even cover scores of
species (there is one relative extreme, 12% cover for Fumana procumbens). Moving away
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Figure 7.8. Non-centred PCA
for the data of Table A1. The
position of the origin is indi-
cated by a + sign.



from the origin the within-plot diversity decreases because within-plot differences among spe-
cies increase, which is most conspicious in sample plot 8.

7.1.6 The ‘arch-effect’ and its role in identifying underlying gradients

The conditions of applicability of different multivariate methods are often forgotten or, more
so, misinterpreted by various authors. For example, some discussions of component analysis
implicitly suggest that the data should follow multivariate normality and if this requirement is
violated, the analysis should not be performed at all. In fact, however, the success of PCA does
not depend on multivariate normality, the distribution of variables may ‘even be even’! (It is a
different matter, of course, if some statistical test of the number of meaningful components as-
sumes normality). The interpretation of PCA is usually rendered more difficult by another
problem, the potential existence of non-linear relationships among the variables. As an illus-
tration of non-linearity, let us consider the following data matrix containing 7 objects (rows)
described by 9 variables (columns):

1 3 1 0 0 0 0 0 0
0 1 3 1 0 0 0 0 0
0 0 1 3 1 0 0 0 0
0 0 0 1 3 1 0 0 0 (7.14)
0 0 0 0 1 3 1 0 0
0 0 0 0 0 1 3 1 0
0 0 0 0 0 0 1 3 1

The data comprise regular changes because the objects are gradually transformed into one an-
other: when going down row by row in the matrix one variable disappears, a new one occurs,
and the values of two variables are swapped in every step. We are tempted to say that there is
in fact a single underlying gradient which influences the variables and, in turn, the objects. In
ecology, for example, some environmental factors, such as elevation above sea level, may ex-
hibit such a behavior. The variables (species) respond to this background gradient in different
ways, illustrated by the so-called response curves. Fig. 7.9a shows an hypothetical and ideal-
ized case, an oversimplification of which is matrix 7.14. Anyone who expects that the PCA or-
dination of sampling units taken along the gradient at equal intervals will arrange the
corresponding points along a line, thus reconstructing the background gradient, will be disap-
pointed by looking at the PCA results. The standardized PCA of these data places the points
into an arch (or horseshoe) in the space of the first two components (Fig. 7.9b). The relative
importance of eigenvalues does not deacrease abruptly, which would indicate the presence of
the single background factor. Instead, the eigenvalues diminish only gradually. We are
tempted to say therefore that the method itself is responsible for the ‘distortion’ of an other-
wise obvious and expected arrangement. In other words, PCA appears to produce an ‘arte-
fact’.

The explanation has long been known in the literature of ordination (Kendall, 1971, was
the first to use the term horseshoe effect).When we examine the reasons behind this ‘effect’,
we find that there is no distortion or artefact at all. Taking the gradient as a whole, the rela-
tionships among the nine species turn out to be far from being linear. For example, whereas
the abundance of species 1 decreases, the abundance of species 2 first increases, then de-
creases and, finally, both reach the zero level. We find similar relationships for other species
pairs as well. In addition, there are species pairs which cannot even be compared: while one is
changing the other remains zero and vice versa. As a result of these complex relationships, the
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species occurring at the beginning of the gradient are fully replaced by others by the fourth
object. That is, the distance between objects 1 and 4 reaches the possible maximum, which
cannot increase any further for objects 1 and 5 or the subsequent quadrats, because there is
simply no possibility for further species replacement. As a matter of fact, this is represented
by the ordination quite faithfully, because PCA ‘attempts’ to keep the distances from 1 to 4, 5,
6 and 7 to be the same. With some experience, the arch effect is easy to recognize in ordina-
tion scattergrams, raising the possibility of non-linear data structures. To sum up, the method
does not introduce any distortion, the result is an obvious consequence of non-linearity of the
data.

Contrary to some ‘pessimistic’ views, the presence of an arch in the arrangement of points
does not spoil the interpretation of the PCA ordination. Nevertheless, many authors take the
view that even though the species respond to a single background gradient in a non-linear
fashion, the points in the ordination should fall approximately onto a line, thus facilitating the
recognition of that gradient. They suggest automatic ‘detrending’ procedures to build in into
the algorithm of ordinations. Phillips (1978) proposed a procedure which fits a parabola to the
points in dimensions 1 and 2, and then straightens the parabola to provide new coordinates for
points for dimension 1. (Actually, a third-order polinom expresses the relationship between
axes 1 and 3, a fourth-order polinom between axes 1 and 4, and so on, hence the name,
polinomial ordination.) Regression to a parabola and its straightening may prove spectacular
in certain cases, thus giving a better impression of a single underlying gradient. The problem
with automatic detrending is that the presence of a gradient, to which the variables respond
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Figure 7.9. The arch ef-
fect. a: The response of
the 9 variables of matrix
7.14 to the background
gradient is non-linear,
therefore their correla-
tions are non-linear ei-
ther. b: As a result, the
seven objects observed
along the gradient will
be arranged along an
arch (a horseshoe) in the
PCA ordination. The bar
diagram (inset) shows
the gradual decrease of
eigenvalues.



according to an optimum curve, is presupposed in the data. We do not know therefore what
would happen otherwise, without detrending. Logic dictates that a plain PCA should be per-
formed first and then, if there are signs of non-linearity manifested by arched arrangements,
we utilize detrending to clarify the picture. In many instances, the user will find that
detrending does not add anything new to the interpretation of PCA (or other, see later) ordina-
tions.

Arch effect is encountered in ecological ordinations whenever the speed of changes along
the gradient (‘species turnover’, �-diversity, Whittaker 1967) is high. In such cases, an alter-
native to detrending is the so-called minimum path adjustment. It is discussed later (Subsec-
tion 7.4.1) because the procedure applies to cases when distances are measured among the
objects.

The relationship between variables can be approximately linear for objects observed only in a
short segment of the background gradient. Then, the points representing the objects will be ar-

ranged almost linearly. This is illustrated by the following 7 � 9 data matrix:

1 9 2 0 8 9 1 5 2
2 7 3 0 8 7 2 5 3
3 6 3 1 7 5 4 6 4
4 6 4 1 6 3 5 6 5 (7.15)
5 5 4 2 6 1 7 7 6
6 4 6 2 5 1 8 7 7
8 3 7 3 4 0 9 8 8

The nine variables (colums) change linearly over the gradient, and a line can be fitted to each
of them (Fig. 7.10a). This implies that there are high positive and negative linear correlations
among the variables, although they are diminished by some ‘noise’ arbitrarily introduced into
the data. Standardized PCA performs ‘ideally’ in such cases. The effect of the underlying gra-
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Figure 7.10. PCA of linear data structures. a:
Graphical illustration of matrix 7.15 using re-
gression lines fitted to nine variables, show-
ing the linear relationship with the gradient.
b: a PCA of 7 objects observed along the gra-
dient arranges them quite well on a line, the
fluctuations being caused by stochastic varia-
tion in the data.



dient manifests itself in component 1 which explains 96% of the total variance. There is some
noise, so that the points do not fit perfectly the regression line, but the deviation from linearity
is a tiny fraction of the variance, merely 4% (Fig. 7.10b).

The components, particularly when there is no horseshoe in the configuration, are often

identified a posteriori as external variables that were not included in the analysis. In ecology,

such variables are usually environmental factors. The linear correlation calculated between

components and external variables may help us interpret the results of PCA. Such a detection

of ecological gradients is termed indirect gradient analysis by ter Braak & Prentice (1988),

because the gradient is revealed by using the species data, rather than incorporating environ-

mental variables. The alternative strategy, direct gradient analysis utilizes information con-

veyed by environmental variables (see Subsections 7.2.5 and 7.3.5).

7.1.7 Factor analysis

Some space needs to be devoted to factor analysis (FA), a technique closely related to PCA in
its algorithmic implementations, yet radically different in its conceptual foundations. This
short discussion is inevitable, because PCA and FA are far too often confounded in the biolog-
ical literature. An obvious evidence of confusion is when PCA axes are directly interpreted
and called as factors, thus leaving the reader in doubt as to the real nature of the ordination per-
formed in that study.

The most essential difference between PCA and FA is that while the components are used

to explain as high a percentage of the total variance as possible, the factors are extracted to ac-

count maximally for the covariances (the shared variances) of variables. Thus, they are re-

sponsible for the relationships among variables only. Factor analysis usually standardizes the

data before computations, so that in effect the correlation structure is explained by the new

axes. The portion of the total variance falling to the individual variables cannot be explained

by the common factors. This is the specific variance of variables, caused by the specific or in-

dividual factors (there are n such factors). Since specific variances are ignored, the common

factors explain lower percentages than the components for a given data set. To sum up: factor

analysis attempts to reveal the correlation structure of variables, whereas the ordination of ob-

jects (observations) is of secondary importance and, very often, is not even illustrated. There-

fore, the role of FA in biological data analysis is relatively small
4
. Without entering into the

algorithmic details of factor analysis, it is useful to list some of its general features that make it

very distinct from other ordination procedures disccussed in this book.

� The variance shared by the variables is explained by a pre-specified number of fac-
tors, p. Since p is defined arbitrarily, i.e., the model of FA is modified with much free-
dom by the investigator, many authors consider factor analysis as an ‘artistic activity’,
rather than an objective multivariate statistical method, and therefore do not recom-
mend it for data exploration (e.g., Kendall 1975, Chatfield & Collins 1980). Others
(Jolliffe 1986) take the view that the question whether other ordination procedures are
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better than FA is irrelevant, because FA can provide valuable information on data
structures for the researcher.

� The factors, like components, are uncorrelated in the basic FA model. The correlation
between factor i and variable j is denoted by aij, and is called the factor loading of that
variable. These correlations provide the coordinates for displaying the ordination of
variables (similarly to the component correlations in PCA). The orthogonality of axes
is not a rule, however, and the factors can also be extracted such that they have
non-zero correlations (Cattell 1978 mentions examples when this may be meaning-
ful).

� The model assumes that the 1-s in the diagonal of the correlation matrix, the
‘self-correlations’, are cumulative results of the influence of common factors and the
specific factors. In other words,

r a ejj

i

p

ij j� � �
�

1

1

2 (7.16)

where the sum of a values indicates the effect of common factors and is called the
communality of variable j, and the quantity ej stands for the specific variance of the
same variable. The larger the value of p, the higher the share of the communality from
the unit correlation. Ultimately, when p equals the rank of the correlation matrix, the
specific variance reduces to zero, so that FA becomes identical to PCA. Nevertheless,
PCA and FA often produce similar ordinations of variables, suggesting that specific
variances are relatively low.

� The best-known algorithm of FA is the principal factor method. This is implemented
as an iterative procedure in which each step is a standardized PCA. At the outset,
some estimation is made for the communalities and the iterations stop when the
communalities do not change more than a pre-specified threshold.

7.2 Two groups of variables: canonical correlation analysis

In principal components analysis, all variables are treated assuming that they represent a sin-
gle logical group, for example, when all variables are cover scores of species, or all are mor-
phological characters. There are situations, however, when this practice is less acceptable
beause the variables form two logically separate groups. Ecological sampling often leads to a
data set in which the sampling units are described in terms of species abundances as well as
some environmental measurements. Although these variables could be lumped together in a
plain PCA, such an ordination would not be able to reveal the relationships between variable
groups. Instead, the ecologist may be interested in evaluating the relationship between envi-
ronmental and biological variables as groups. In other words, the question whether species
data are predictable from the environmental variables and vice versa is considered. In system-
atic studies, the taxonomist may also want to evaluate the correspondence between two groups
of variables, one describing the taxa in their larval stage, and the other referring to the adult
stage. This kind of data exploration is facilitated by a derivative of PCA, the so-called canoni-

cal correlation analysis (CCA; in other sources, e.g., Jongman et al. 1987, the abbreviation
COR is preferred).
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The method was developed by Hotelling (1936). The main idea is that the linear combina-

tions of original variables are searched for in the groups separately, with the constraint that

these linear combinations are maximally correlated. To put it differently: CCA can be con-

ceived as a double principal component analysis supplemented by finding the best fit of axes

obtained for the two groups. The new axes extracted by CCA are the canonical variates, and

the correlation between the variates, one coming from the first group of variables and the other

from the second, is the canonical correlation. There are several pairs of such axes, they are de-

termined from the data in order of importance. While PCA attempts to explain the total vari-

ance effectively, CCA maximizes the covariance between two groups of variables (Cooley &

Lohnes 1971, Gittins 1979).

The graphical illustration of CCA helps understand the principle of the method (Fig.
7.11). Assume that both variable groups include two variables, abbreviated by x1 and x2, as
well as by y1 and y2, respectively. If a PCA were applied to the two subsets of data sperately,
then the first components would run through the points in the manner illustrated by thin lines
(we can forget about the next component, for simplicity). However, the coordinates of objects
on the component of the left diagram do not correlate maximally with the corresponding coor-
dinates in the right diagram. Both axes have to be rotated a little bit (thick lines in Fig. 7.11)
to attain the highest possible correlation between these axes.

The computations of CCA start from the correlation matrix of variables, which is subdi-
vided to four submatrices according to the variable groups:

R
R R
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�
�

�
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�

�
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11 12

21 22

. (7.17)

R11 contains the correlations between the n1 variables in the first group (left domain), R22 is a
submatrix of correlations between the n2 variables in the second group (right domain), whilst
R21 and its transpose R12 summarize cross-correlations between the groups. In CCA, we wish
to maximize the between-group correlations and minimize the within group correlations.
Since their ratio does not exist in matrix algebra, we use the inverse of within-group
submatrices to derive a correct formulation, given by the multiple R R R R22

1

21 11

1

12

� �
. Then, the

resulting matrix is subjected to eigenanalysis by solving the following characteristic equation:
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Figure 7.11. Illustration of canonical correlation analysis. The components obtained separately for the
two variable groups (thin lines) very rarely coincide with the canonical variables (thick lines).
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The solution is not as simple as in case of PCA, because the matrix R R R R22

1
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� � is not sym-
metric. The eigenvectors vj are computed such that their length is unity. Then, the following
normalization provides the canonical weights for the second group of variables on canonical
variate j:
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As a result of this transformation, the variance of the variates becomes 1. The weights for the
first group of variables on the same canonical variate are obtained as:
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The canonical weights multiplied by the original data provide the coordinates of objects for
the first (left) domain

T X B= � , (7.21)

and for the second (right) domain of variables

U Y C= � . (7.22)

In these matrix equations, X� is the upper portion of the data matrix with a size of m � n1 and
Y�, with a size of m � n2 is the lower portion of the data matrix. Recall that the objects are the
rows and variables are the columns of the original data matrix. All variables are centred and
standardized to unit variance beforehand. Matrices B and C contain the canonical weights as
determined by Equations 7.19 and 7.20; their sizes are n1�q and n2�q, respectively (the mean-
ing of q is clarified right below).

7.2.1 Canonical correlations and their significance

The number of positive eigenvalues in CCA is q = min{n1, n2}, provided that m > n1, n2. The
square roots of the eigenvalues measure the canonical correlations between the variable
groups:

| |R j j� � . (7.23)

The are p different canonical correlations which can be arranged in descending order. The ab-
solute sign indicates that the canonical correlations range between –1 and 1 like usual correla-
tions, but the sign cannot be determined from the analysis. Therefore, convention dictates that
the linear correlation between bj and cj is measured by the absolute value.

If the observations are independent and the condition of multivariate normality holds, then

the difference of canonical correlations from zero can be tested statistically. Bartlett’s  (cf.

Cooley & Lohnes 1971) can be used to test the simultaneous significance of several canonical

correlations such that the first 0, 1, 2, ..., k, ..., q canonical variates are removed:

 � �
� �
!
j k

q

j

1

1( )� . (7.24)

Bartlett has shown that  follows the "2-distribution after the following transformation:

X m n n2
1 21 0 5 1� � � � � �[ , ( )] ln  (7.25)
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at (n1 – k) (n2 – k) degrees of freedom. For example, when the test indicates significance for k =
0 but not for k = 1, then we can say that only the first canonical variate is meaningful statisti-
cally.

There are potential dangers with the above significance test, as pointed out by Gittins
(1979, 1985). He warned that caution is needed even if both conditions of the test are satis-
fied. A more appropriate procedure is the direct statistical analysis of the eigenvalues, but this
assumes knowledge of the distribution of maximum eigenvalues that can be obtanined from
the data.

Canonical correlation analysis allows several ordination diagrams to be made. The most
common practice is to construct a two-dimensional configuration such that the horizontal axis
is the first canonical variate from the left domain, whereas the vertical axis is the first variate
from the right. If the canonical correlation (Formula 7.23) is high, then the points will fall
close to a ‘diagonal’ line. Weaker inter-domain relationships are indicated by more scattered
arrangements. Another interpretive tool is the ordination of objects for the two most important
canonical variates for each group. This is recommended particularly if both of the first two ca-
nonical correlations are high and significant. The correlations among variables and canonical
variates can also be demonstrated in these ordinations, in a similar manner to PCA biplots.

The CCA of the third Iris species of Table A2 (I. virginica) illustrates what has been said.
This example is deliberately simple; the length measurements of the sepals comprise the left
domain, whereas the petal variables constitute the right domain. The problem is to reveal the
relationship between sepal and petal measurements, notwithsanding that these variables can
be treated together logically. Fig. 7.12 is the CCA ordination of iris individuals on the first ca-
nonical variate from each domain. The fit of points to a ‘diagonal’ line is very close, indicat-
ing the relatively strong relationship between the two groups of variables (R1 = 0.86, "2 =
75.9, p<<0.001). Note that the second canonical variates are also significant (R2 = 0.47, "2 =
12.0, p<0.001). The results are similar for Iris versicolor, although R1 is ‘only’ 0.76. The
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Figure 7.12. Canonical
correlation analysis of
50 individuals of Iris
virginica. The ordina-
tion depicted in this
figure arranges the in-
dividuals along the
first canonical variate
obtained for the sepals
(horizontal axis) and
the first canonical
variate for the petals
(vertical axis).



analysis of the third species, Iris setosa, provides a different result; both canonical correla-
tions proved to be low (e.g., R1 = 0.32), and none of the canonical variates was significant. A
straightforward conclusion is that for this species the sepal data are not predictive as to the
petal measurements and vice versa. Another interesting point is that the canonical correlation
analysis of all species taken together would have confounded the differences between species.
Actually, this joint CCA of the species yields one significant canonical corrrelation (cf.
Podani 1994), reflecting that on the genus level the petal and sepal measurements are strongly
correlated.

7.2.2 Correlation with the original variables

There are two kinds of correlation between canonical variates and the variables in CCA, as
discussed below.

Within-group (‘structure’) correlations. Measuring the contribution of each variable to the
canonical structure in the group is a useful interpretive aid in CCA. Variable i from the left do-
main, represented by vector xi, and canonical variate j derived for this domain have the fol-
lowing correlation:
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Similarly, the correlation of variable i in the right domain, given by vector yi, and the canoni-
cal variate j extracted from this domain is obtained as
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The rik values in both equations correspond to the usual linear correlations between the origi-
nal variables. Formulae 7.26-27 can be used to identify variables that represent their own
group most markedly when compared to the other domain.
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Figure 7.13. CCA of 50 individuals of Iris virginica based on a: sepal measurements, b: petal mea-
surements. Arrows indicate the strength of correlations between original variables and canonical vari-
ates in a way analogous to the correlation-based Rohlf-biplot in PCA.



The CCA of Iris virginica data reveals that in both variable domains the length measure-
ments are correlated most strongly with the first canonical variate. They are almost ‘identical’,
because the structure correlations are close to 1.0. The second canonical variate in both
groups, as expected, has high correlations with the width measurements (0.88 and 0.94).
These are best illustrated using biplot-like diagrams prepared separately for the first two ca-
nonical variates in both groups. The coordinates of objects are obtained by Formulae 7.19-20,
while the coordinates of variables are determined using equations 7.26-27. The latter are mul-
tiplied by an arbitrary scale factor for commensurability with the object scores (Fig. 7.13a-b).
Comparison on strictly visual basis shows that there is considerable agreement between the
two ordinations, although the large number of points and the overlaps confuse the picture.
More possibilities for preparing CCA biplots are discussed exhaustively by ter Braak, 1990.

Between-group (interset) correlations. Another possibility to describe canonical results is in
terms of the correlations between the variables of one domain and the canonical variates de-
rived from the other (Gittins 1979). Formally, variable i of the left domain has the following
correlation with canonical variate j from the right domain:
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Analogous to this is the calculation of the correlation between variable i of the right domain
and canonical variate j from the left domain:
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In the above two formulae, the rik values are the correlations from the R12 submatrix. The
square of a between-group correlation is the proportion of the variance of the variable which is
explained by the canonical variate from the other group. These correlations are not suitable to
graphical display.

The evaluation of Iris virginica measurements indicates that the variable most predictable
by a canonical variate from the other group is the length of sepals. As much as 75% of the
variance of sepal length is accounted for by the canonical variate from the petal variables. The
same percentages for the width measures do not exceed 18%.

7.2.3 Variance and redundancy

The possibilities for evaluating CCA results are not yet exhausted. We can also calculate the
proportion of variance of a given group explained by its own canonical variate. This is in fact
the average of the squared within-group correlations. For the left domain, the variance propor-
tion explained by canonical variate j is thus:
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The percentages for the right set are derived in a similar way:
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For the Iris virginica data, these variance proportions are 61% and 39% for the left set
(sepal measurements) and 55% and 45% for the right set (petals). The figures illustrate appro-
priately the contrast between canonical variates and components. In the PCA of sepal data,
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component 1 explains 74% of the total variance, leaving 26% for the second. This is, of
course, a much more efficient variance extraction than 61% plus 39%. As emphasized above,
however, this is not the primary objective of CCA.

The proportion of variance of one domain, explained by a canonical variate from the other

is called the redundancy, a between-group analogue of variance (Gittins 1979). It is deter-

mined as the average of squared between-group correlations. The variance of the left domain

is explained by the canonical variate j from the right group to the extent given by:
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whereas the redundancy in the other way is computed as:
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The sum of redundancy values over j is the total redundancy of one domain with respect to the
canonical variates of the other. This is the proportion of total variance which is explained by
the other group of variables. Total redundancy is an asymmetric measure, being usually dif-
ferent for the left and the right domains.

This is the case in the Iris example. The amount of variance of the two sepal variables ex-
plained by the canonical variates of the petals is 55%, whereas this percentage in the reverse
direction is merely 51.1%.

7.2.4 Notes on the applicability of CCA

Many authors agree that the interpretation of CCA results is more problematic than any other
ordination in multivariate analysis. Bock (1975) points out that the canonical variates are re-
sults of a compromise; given the condition of orthogonality the between-group covariance is
maximized such that within-group variance is minimized (see what I have said under Equa-
tion 7.31). As a consequence, the canonical variates and principal components rarely, if ever,
agree. This incongruence can go so far that a canonical variate explains a small fraction of the
total variance of the group, thus having no interpretive value (Rohlf, in: Legendre & Legendre
1983, p. 330). In such cases, the canonical correlation expresses a relationship which has no
meaning (cf. Pimentel 1979). This problem is circumvented if PCA is performed for one
group of the variables, and then the component scores are involved in CCA (e.g., Digby &
Kempton 1987, p. 82, or Ludwig & Reynolds 1988, p. 299). Alternatively, both groups are an-
alyzed by PCA only (Williams & Lance 1968, Shaukat & Uddin 1989). Another advantage of
these separate PCAs is that potential singularity problems with the R11 or R22 matrices are au-
tomatically solved (when the number objects is smaller than the number of variables, then
these matrices cannot be inverted). As an ultimate solution, standard CCA can be performed
on original variables and PCA scores as well, and the results thus obtained are compared. In
this book, this comparative approach is not illustrated.
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7.2.5 Redundancy analysis

In the CCA of Iris variables, the relationship between the two groups was assumed to be sym-
metric; neither direction of comparison could be favoured. In many ecological investigations,
however, no such symmetry is plausible becasue species respond to environmental variables,
which is not so in the other way! There is no symmetry in predictability, contrary to what I
suggested briefly in the introduction to CCA for mere didactic reasons. In ecological studies,
it were illogical to determine canonical variates such that linear combinations of variables are
found in both groups of variables and their correlations maximized (as done in CCA). This
would be hard to interpret. For species and environmental variables, it is more reasonable to
extract ordination axes such that they reflect the environmental variables, because they influ-
ence the performance values of species (cover, biomass etc.). Thus, let the ordination axes be
linear combinations of environmental variables which, at the same time, explain as much as
possible of the variance in the species-based ordination of objects (sites, sample plots). In
other words, the objects are ordinated as in PCA with the requirement that the components
maximally interpret the environmental variables as well. The method of redundancy analysis

(RDA), developed by Rao (1964) will do it for us. RDA was introduced to ecological data
analysis by ter Braak & Prentice (1988), as a case of direct gradient analysis. Since the axes
are not fitted freely to the objects, but are also determined by the environmental variables, ter
Braak & Prentice suggested the term constrained ordination (RDA is thus a constrained

PCA). It has relatively few applications, mostly because the constrained strategy of canonical
correspondence analysis (Subsection 7.3.5) has become more popular in ecologcial data anal-
ysis (Birks et al. 1996).

The strategy of RDA is in fact a canonical correlation analysis in which correlations be-
tween the species are neglected. The interspecific correlations convey no directly useful infor-
mation to us, contrary to the within-group correlations of environmental variables, and the
between-group correlations of environmental variables and species. If the species data are
summarized in submatrix X, then R11 is to be replaced in Equation 7.18 by the identity matrix
I (its diagonal is filled up with 1-s, and all other values are zero).

7.3 Correspondence analysis

We have seen that the biplots in PCA or CCA reveal the relationships between objects and
variables quite efficiently. For both methods, however, the ordinations of objects and vari-
ables are obtained separately, and only afterwards are they superimposed to each other using a
rescaling procedure or some less elegant ‘tricks’. One might feel that this is an unwise and
cumbersome strategy and seek a procedure that finds the optimum fit of the two ordinations
directly and simultaneously. There is an ordination method, namely correspondence analy-

sis, that is designed to fulfil this need; the term correspondence referring to the requirement
that the positions of objects and variables in their joint ordination should mutually correspond
to one another. Many variants of the method have long been used in various fields of science
and humanities and, as a result of this diversity, they have been named very differently. For
example, it can be shown that reciprocal averaging, dual scaling, contingency table analysis
and other procedures (cf. Legendre & Legendre 1983) are in fact derivatives of a method pro-
posed and popularized under the term l’analyse des correspondances by the French school
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(Benzécri et al. 1973). Its translation to English, correspondence-analysis (COA6) is now
considered as a collective term referring to all algorithmic variants of the original method.

7.3.1 An intuitive example and reciprocal averaging

The essence of COA is most easily understood if we consider the following simple
one-dimensional ecological example. Assume that the effect of an ecological background gra-
dient, such as a moisture gradient, is to be revealed indirectly on the basis of species data de-
rived from sample plots (phytosociological relevés or quadrats). The species occurring in the
plots can be arranged according to their moisture requirement into a point system ranging
from 0 to 10. (These values or weights are determined empirically by earlier investigations.)
For each plot, the abundance of each species is multiplied by its weight, and then these prod-
ucts are summed over all species which, in turn, is divided by the total abundance in the plot to
compensate for excessive abundance differences in the sample. Thus, the more dominant are
the drought-tolerant species in a plot, the lower its score will be and, conversely, high plot
score will refer to the dominance of species with high moisture requirement. Based on these
scores, the plots can be arranged along an ordination axis which may be a good approximation
to the actual humidity gradient that characterizes the sites. This is the essence of the weighted

averaging approach proposed by Whittaker (1967). However, we need not stop at this point,
because the positions of plots can now be used to refine the 0-10 scale of species further. The
refined new value is obtained by weighted averaging again: for each species the coordinate of
every plot on the ordination axis is multiplied by the abundance of the species, the scores are
added and then divided by the total abundance of the species. Afterwards, standardization is
necessary to rescale the new values so that they have unit variance and zero mean. Using the
new weights thus obtained, an improved ordination of plots is derived. From this, new weights
are calculated for the species, and so on, the calculations being continued until the changes of
weights between two subsequent steps do not exceed a prespecified threshold value. The final
result of these iterations is a one-dimensional ordination of plots and species in which the spe-
cies positions correspond to the quadrat positions and vice versa, as perfectly as possible. This
iterative strategy has been known as reciprocal averaging (RA, Hill 1973) in the literature of
numerical ecology.

The calculations involved in RA are summarized as follows. Let the rows of the data ma-
trix Xn,m be species (variables) and the columns be plots (objects). The coordinates of plots
along the first axis are determined as follows:
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. is the total with respect to plot j and �$���� is the rescaling parameter

mentioned above with � = 0.5 (we shall see other possibilities later on). Furthermore, ai is the
weight of species i on the same axis. Consequently, the coordinates of objects are derived
from the weighted relative contributions of variables. The standardization by the total of each
object is implied in the algorithm of RA. To derive coordinates for the variables, we use a
similar equation:
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.. In other words, the position of a variable on the axis is determined

from the weighted relative contributions of objects. In this, division by the total for the vari-
able is implied.

The mutual relationship between the so-called transitional formulae 7.34-35 is thus fairly
obvious: one equation is solved by using parameters determined from the other. Therefore, the
solution can only be iterative. It has been shown that the iterations converge into a stable re-
sult irrespective of the starting weights of variables and that these starting values influence
only the speed of convergence. The significance of these findings is that the method applies
even though we have no information on the environmental requirements of the species at all –
contrary to the simple method of weighted averaging –, and we can even start from a random
sequence of objects. Equations 7.34-35 have several solutions, each corresponding to an ordi-
nation axis. When the solution for the first axis is stable, then its effect is removed and an or-
thogonal second axis is determined, and so on. The computational steps of RA are described
in detail by Hill (1973) and Pimentel (1979).

7.3.2 Computational steps of correspondence analysis

Whereas the algorithm of RA demonstrates the objective of the analysis in a didactic way, the
extraction of all axes and associated ‘rescaling factors’ is much more efficient via eigen-
analysis. The reader less familiar with details of linear algebra can even skip this subsection.
The matrix algebraic forms of the transitional equations are expressed as :
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X� A R
-1, (7.36)

A = T
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X B R
-1, (7.37)

where U
-1, T

-1 and R
-1 are diagonal matrices with elements 1/uj, 1/ti and �$ � % respectively.

Replacing 7.37 into 7.36 we obtain:
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which, after some rearrangement, takes the following form:
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In this, U
-1/2 and T

-1/2 are diagonal matrices with elements 1/ &uj and 1/ & ti, respectively;
U

1/2 contains the u j values in its diagonal. If we introduce the following symbols: Z = T
-1/2

X U
-1/2, V = U

1/2
B and = R

2, then Equation 7.40 simplifies to a form that has been known
from the description of PCA (cf. Equation 7.6):

(Z�Z - �I) v = 0 . (7.41)

That is, the �-s of matrix and the v vectors summarized in matrix V are the eigenvalues and
eigenvectors, respectively, of the Z�Z cross-product matrix. After having completed the
eigenanalysis. the relationship v = U

1/2
b can be used to derive coordinates of the objects:

B = U
-1/2

V . (7.42)
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Then, the coordinates of variables, given by matrix A, are easily obtained using the 7.35 tran-
sitional equation.

7.3.3 Notes on the implementation of COA and the interpretation of its results

If one wishes to write a program for COA and then to evaluate the results correctly, then the
following considerations should be kept in mind:

1) The X data matrix should be standardized by the grand total of all values of the matrix (x..),
that is, each value is modified according to:

x’ij = xij / x.. (7.43)

As a result of this operation, the grand total of new values will be 1. Obviously, such a stan-
dardization is meaningful only if the variables are of the same type (e.g., presence/absence or
abundance of species) and there are no negative data. COA is not suitable to the analysis of
non-commensurable variables, and to variables expressed on different measurement scales.
The analysis treats the data matrix as being a large contingency table in which the rows and the
columns represent logically comparable entities such that the scores themselves are frequen-
cies or other data that can be interpreted as frequencies (such as percentage cover).

2) There is a trivial solution for the transitional formulae (ai = 1, bj = 1), which corresponds to

� = 1. This eigenvalue refers to the centroid of rows and the columns and, being present in all
cases, has no practical significance. We can get rid of this superfluous dimension by centring
performed prior to the analysis:

yij = xij – xi.x.j / x.. (7.44)

Centring implies that from each value the expectation obtained from the row and colum totals
is subtracted. This operation is well-known from conventional biometry in the calculation of

the "2 statistics based on 2�2 contingency tables. This ‘coincidence’ underlines the view that
COA has in fact been designed to the evaluation of contingency tables.

The above operations are included simultaneously if the starting Z matrix is calculated us-
ing the following formula:
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Since the eigenanalysis is performed on Z�Z, the computations will be faster if the data are
prepared for input such that number of columns is not larger than the number of rows (in this
case will Z�Z be the smallest). This is absolutely ‘legal’, because the objects and variables are
treated symmetrically by COA when �=0.5 (see below), obeying the principle of attribute du-
ality (Subsection 2.1). No analogous flexibility is present in PCA or other ordination methods,
however. When interpreting the results, one has to make sure what the rows and the columns
are, of course.

3) The non-trivial eigenvalues are usually smaller than 1. Their square root is the canonical

correlation

Ri i� � (7.46)

which expresses the mutual agreement or correspondence of object and variable coordinates.
In the example, the canonical correlation measures the reliability of species to get the ordina-
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tion of quadrats and vice versa: the efficiency of quadrats to derive an ordination of species on
axis i. The larger Ri, the higher the correspondence between the two orderings. In the transi-

tional formula with � = 0.5, the reciprocal value of canonical correlation was in fact used.

The sum of eigenvalues is the "2
calculated for the data matrix taken as an n�m contin-

gency table. Because all values were divided by the grand total previously, for the original

data we obtain that
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Regarding the number of positive eigenvalues, t, the explanation given for PCA needs to be
somewhat rephrased: t is the number of orthogonal dimensions necessary to explain the devia-
tions between actual and expected data values. Therefore, if every value in the matrix equals its

expectation (that is, "2 = 0), then all eigenvalues are zero. The size of eigenvalues allows prelim-
inary conclusions to be made on how far the data matrix deviates from an unstructured, random
data set.

4) The coordinates for rows and columns can be displayed in separate scattergrams, and their
explanation is as usual. At the same time, however, the coordinates can be used to prepare a
COA biplot as well, whose interpretation is not the same as that of PCA biplots. The differ-
ence is emphasized such that the simultaneous display of row and column coordinates in COA
is termed the joint plot (cf. Oksanen 1987). Whereas in PCA biplots the direction and the rela-
tive length of arrows have interpretive value, in a COA joint plot the relative closeness of
points representing objects and variables may also be informative, and the arrows may be
omitted. However, the evaluation and interpretation of joint plots depend greatly on the con-

trol parameter� and the magnitude of eigenvalues. In the algorithm described above, the vari-
ables (rows of the data matrix) and the objects (columns) were treated symmetrically, because

�was set to 0.5. This parameter, however, may be freely changed within the interval [0,1] (cf.
ter Braak 1985), so that there is an infinite number of (slightly) different ordination results for
the same set of data! Of these, two other settings merit particular attention, especially in eco-
logical ordinations with species as variables and quadrats as objects.
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Figure 7.14. Correspondence
analysis of Table A1 with �
= 0.5. Compare the result
with the PCA diagrams (Figs
7.2-6 and 7.8).



If � = 1, then the coordinates of quadrats (now columns) are obtained as the weighted av-

erage of species coordinates on the same axis. In the joint plot, species i will be the closest to

those quadrats in which it has the highest proportion. That is, its position in the ordination

space is an “estimate” of its optimum locality. It can easily happen that several species have

their optima outside the set of quadrats examined, therefore the species scores usually have a

wider range than the quadrat scores. If there is a quadrat in which only one species is present,

then this quadrat will coincide with that species in the joint plot. Many COA ordination pro-

grams (such as DECORANA, Hill 1979b) offer only this option to the user. In case of � = 0,

we find the opposite situation: the species (row) coordinates are obtained as the weighted av-

erage of quadrat coordinates (without rescaling, because 1/�� = 1). Then, the points represent-

ing species fall usually close to the origin, and the quadrat coordinates have the wider range. If

there is a species which appears in a single quadrat only, then its position in the joint plot will

coincide with the position of that quadrat. In fact, the setting with� = 0.5 provides the average

of the previous two configurations. When the eigenvalues pertaining to the axes portrayed are

close to 1 (the data matrix is strongly structured, "2
is high), the change of the a scaling param-

eter causes negligible differences in the resulting joint plots. In these cases, the relative posi-

tions of rows and columns in the graph convey meaningful information. For low eigenvalues –

for less structured data matrices – the nearness of points is not interpretable, and the angles

and directions remain meaningful. These are illustrated by examples in the next subsection

(Figs 7.16a-c).

5) When one considers standardizations 7.43-44 and the matrix equation of COA (7.41), the
statement that COA is a special version of PCA will not be too surprising (Greenacre & Vrba
1984, for example, introduces COA exactly in this sense). Whereas centred PCA maintains

the Euclidean distances of objects in the ordination, COA preserves the so-called "2-distances
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Figure 7.15. The result of COA
with � = 0.5 for a strongly
non-linear data structure. The sec-
ond axis is apparently a quadratic
function of the first. The first two
eigenvalues are high (0.92 and
0.72), so that the modification of �
does not influence significantly the
relative positions of points.



(Formula 3.67). More precisely, for � = 1 in the ordination of columns the squared distance
between points j and k for all axes will be proportional to the quantity
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(This is in fact the squared Euclidean distance calculated from double standardized data.)
CHISQDjk = 0, when the two objects contain the same variables in identical proportions (one
object is obtained from the other using a q arbitrary non-negative number as a multiplying fac-

tor, i.e., the second is q times the first). Alternatively, when � = 0, the ordination of rows will
preserve the chi-square distances (the equation for rows is similar to Formula 7.48). In tjis
case, CHISQDhi = 0, if variables h and i have always the same proportion in the objects (e.g.,
the abundance of species h is q times higher than the abundance of species i in every quadrat).

It is now due time to show the performance of the method using a simple actual example.
Consider again the data in Table A1, now conceived as a 12�8 contingency table. The present
arrangement is favourable as far as computing speed is concerned, because the number of col-
umns is smaller than the number of rows. (If, however, 30 species describe, say, several hun-
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Figure 7.16. Correspondence analysis of matrix 7.15 (p. 232) for three different values of the scaling
factor (a: � = 1, b: � = 0.5, c' � = 0). In a, the coordinates of rows are obtained as the weighted aver-
age of column coordinates, contrary to case c in which this is in the opposite way, whereas b repre-
sents a perfect compromise between the previous two.



dred quadrats, then the species should be the columns to reduce computing time.) The joint
plot obtained by a symmetrically weighted COA is displayed in Figure 7.14. If compared to
the PCA results, we do not see substantial differences, and all what appear is caused by stan-
dardization with column and row totals. The results of asymmetric analyses (i.e., with � (
0.5) need not be shown, because they do not differ much from the ordination in Fig. 7.17, ow-
ing to the relatively high first eigenvalue (�1 = 0.7). Since the reader has gained some experi-
ence already with arched arrangements in ordinations, a horseshoe-like trend is recognized
easily in this result. Let us therefore see how this “effect” can be treated in correspondence
analysis.

7.3.4 The “arch effect” and data linearity in correspondence analysis

Since both PCA and COA can be traced back to the same eigenanalysis problem, the arch ef-
fect is also known from COA, as shown by the previous example. In the joint plot of the COA
of matrix 7.14 (Fig. 7.15), as expected, a conspicious double arch can be observed.

The reason is known already to us: the data structure is non-linear. As a result, the
interpoint distances are maintained most faithfully by the analysis if the points are arranged
along a horseshoe. At the same time, the “correspondence” between variables and objects is
perfectly visualized in the ordination. The interpretation of the result is thus partly if at all in-
fluenced by the presence of the arch (Greenacre 1984). Many authors nevertheless consider its
“removal” as an essential task. Hill (1979b) and Hill & Gauch (1980) developed the so-called
“detrended correspondence analysis” (DCA) which operates by splitting the first axis into ar-
bitrary segments, and by shifting these segments to obtain the best fit of points to a line. Since
the detrending algorithm of DCA has been still popular in vegetation science and in ecology,
in general, I emphasize again what I have said already in the discussion of PCA: the uncritical
use of detrending cannot be recommended. At best, DCA may prove useful if applied parallel
to standard COA so that we can appreciate the differences. DCA will not add much to what
we can conclude from standard COA, only some “aesthetic” improvement of the joint plots
can be achieved. A potential danger in the exclusive use of DCA is its “black box” behaviour,
which may even cause loss of ecologically meaningful information (Pielou 1984). The ques-
tion of “detrending versus not detrending” has been subject of hard methodological debates
(see Gauch 1982, Kenkel & Orlóci 1986, Minchin 1987, Wartenberg et al. 1987, Peet et al.
1988, Oksanen 1988, Knox 1989). Reyment (1991) concluded the dispute and left the ques-
tion open by saying that the “proof of the pudding is in the eating”, thus emphasizing that ev-
erything is case-dependent. Jongman et al. (1987) and ter Braak & Prentice (1988) appear to
prefer the method of polynomial regression (as proposed by Phillips, 1978, for PCA) against
detrending and it is included as an option in ter Braak’s (1988) CANOCO program.

Let us now examine how the method of COA performs for variables that are linearly related to
one another. The starting data, as for PCA, is matrix 7.15 in which the columns are the vari-
ables (their approximately linear relationships are obvious).

The COA evaluation shows that the data values are not as unexpected as were in case of
matrix 7.14, because the first eigenvalue is merely 0.19, and the second is as little as 0.003 (as
far as their proportions are concerned, there is no big difference from the PCA result, the first
eigenvalue is much more important than the second). A consequence of the low eigenvalue is
that the value of � will considerably influence the relative positions of points in the joint plot
(Figs 7.16a-c). If the row (quadrat) coordinates are obtained as weighted averages of column
(species) coordinates (Fig. 7.16a), then the seven quadrats will closely fit the first axis, show-
ing that the linear arrangement is well-detected by COA. The relationships in terms of "2-dis-
tances are maintained for the quadrats in this diagram. The species are arranged around the
quadrats, showing that the species optima fall outside the range of quadrats included in the
analysis. As ter Braak & Prentice (1988) pointed out, COA assumes a unimodal response of
species to a background gradient, contrary to PCA, and its lack causes the low eigenvalue.
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(Nevertheless, the unimodal response, as we have seen above, will not exclude the possibility
of an arch.) In the opposite situation (Fig. 7.16c), the coordinates of columns (species) are de-
rived as weighted averages of quadrat coordinates, so that the species will fall close to the ori-
gin, arranged approximately linearly. Their distances will be proportional to their
"2-distances. Symmetric COA (Fig. 7.16b) is an “average” of the previous two configura-
tions. In this case, the closeness of points is not suggestive of whether a species characterizes
certain quadrats unequivocally. The directions and relative distances from the origin, how-
ever, do have a definite meaning.

7.3.5 Canonical correspondence analysis

Like PCA, COA also has its constrained form, known as canonical correspondence analysis

(CCOA, ter Braak 1986, 1987). The method has been widely used in ecological data analysis,
and serious journals can easily reject manuscripts devoted to evaluating the relationships be-
tween species and environment (e.g., in direct gradient analysis, ter Braak & Prentice 1988) if
CCOA happens to be ‘forgotten’ by the author. It is therefore inevitable to provide at least a
brief summary on its theoretical foundations and the interpretation of its results.

As in RDA, the ordination of objects (sites, quadrats) is not exclusively based upon the

species data since the axes are also influenced in some way by the environmental variables (as

we shall see below, there are two possibilities to exert this influence). As usual in ordinations,

the axes must explain as much of the total variance as possible, but owing to the constraining

effect of external variables the variance accounted for by CCOA axes is more or less lower

than in COA ordinations. This ‘sacrifice’ has to be made in order to be able to interpret ordina-

tion axes more directly and to reveal species/environment relationships within the ordination

of objects.

The theory behind CCOA is best understood if we consider the reciprocal averaging algo-

rithm (Subsection 7.3.1) modified in several steps (Jongman et al. 1987). Assume that data

matrix X ={ xij} includes the species as rows and the objects as columns. Assume further that

matrix Z contains the environmental data, with variables as rows and objects as columns, the

latter presented in exactly the same order as in X. Note that the variables are centred. Let the

number of environmental variables be q. Then, the species and object coordinates on the first

axis are determined using the following iterative algorithm:

1. Generate an arbitrary set of coordinates for objects (vector b) such that all scores are
different. Let this coordinate be denoted by bj for object j.

2. Species coordinates (vector a) are obtained as weighted averages from the object co-

ordinates, that is for species i we calculate a b
x
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, in which ti is the row total

for species i.

3. The new species scores are now used to derive new object scores (vector b*) by

weighted averaging, that is b a
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1

, where uj is the total of species scores in ob-

ject j (column totals). (These totals are written into the diagonal matrix N.) This step
implies that b* contains weighted average scores of objects.
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4. The coordinates of objects (taken as ‘dependent’ variables) are weighted by u j and
then fitted to the environmental variables (now considered as ‘independent’ variables)
using multiple regression. The matrix equation of this weighted least squares regression
is c = (ZNZ‘)-1

ZNb*. The regression coefficients (more precisely, canonical coeffi-

cients) thus obtained will be used to derive the fitted scores of objects. For object j, this
score is calculated as

b c zj

h

q

h jh�
�



1

(7.49)

and is written into vector b (recall that zjh is the centred score of environmental variable
h in site j ). Equation 7.49 implies that the scores are now linear combinations of the en-
vironmental variables (see Appendix C, for more on linear combinations).

5. The coordinates obtained in the previous step are standardized (rescaled): from the
weighted scores the mean is subtracted and the result is divided by the standard devia-
tion.

6. If the difference between the scores just derived and those computed in the previous
iteration does not exceed a pre-specified threshold, then the analysis stops. Otherwise
return to step 2.

The main difference from RA is the multiple regression applied in step 4. The iterations con-
verge into a stable solution regardless of the initial scores; only the number of iterations may
vary. When the analysis is completed, the standard deviation of points corresponds to the
eigenvalue. When the first axis is determined, its effect can be removed and a second CCOA
axis orthogonal to the first is extracted using the same algorithm, and so on.

In the interpretation of CCOA results, the following considerations apply:

� First of all – as mentioned already – there are two sets of object coordinates when the
analysis is finished: vectors b* and b obtained in the last iteration steps 3 and 4, re-
spectively, for each ordination axis. The first set may be abbreviated as WA, the sec-
ond as LC scores (Palmer 1993). The WA scores represent the direction of variation in
the species by sites matrix X constrained to be maximally correlated with the LC
scores. The LC scores, on the other hand, are the best fit of species to the environmen-
tal variables. The ordinations based on these two sets of scores may differ consider-
ably, and care is needed when examining computer outputs7. As McCune (1997)
points out based on his experiments with simulated data sets, the LC scores are very
sensitive to even moderately noisy environmental data. Since environmental data are
usually noisy anyway, the sensitivieness is even more critical when the measured
variables are in fact irrelevant. For the exploration of community structure, therefore,
McCune suggests the use of WA scores, unless there is a good reason to assume that
the environmental variables are almost noiseless.
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� The WA scores can be rescaled, as in correspondence analysis, using Equation 7.34,
(the explanation given on p. 243 applies here as well).

� The two sets of scores are analogous to the two sets of CV scores obtained in COR,
and could be displayed in the same way (see Fig. 7.12). Instead of this, however, the
linear correlation between b* and b is used to measure the strength of the relationship
between species and the environmental variables. This is often called the species/en-

vironment correlation. Its value is often misleadingly high, suggesting that the
eigenvalues should also be considered in evaluating the importance of ordination
axes. Axes with low eigenvalues can produce high correlation, but such dimensions
account for a small portion of the variance, thus having little interpretive value.

� The species and object coordinates can be simultaneously illustrated in a joint plot, as
in COA. Objects in which a given species has high proportions will be close to the po-

sition of that species, depending on the value of �, as we have seen already. In the
same diagram, the environmental variables are also displayed. Those measured on the
interval or ratio scale are represented by arrows (as in PCA). The interpretation of rel-
ative species positions and arrow directions is as follows: the species can be projected
onto each arrow to derive a species sequence which reflects approximately the re-
sponse of species to that environmental variable. In this way, species positively or
negatively associated with the environmental variable can be identified, as exempli-
fied below. The length of arrows is proportional to the correlation of the variable with
the axes and, of course, the long arrows are the most important in interpreting the re-
sults. Nominal variables may also be included in the analysis, they are represented by
several binary variables whose number is one less than the number of states of the
nominal variable. Usually, these states appear as points in the display (Jongman et al.
1987, p. 142). The coordinate for a state of the variable is obtained as the weighted av-
erage of object coordinates in which this character state appeared.

� The arch ‘effect’ is usually less conspicious in CCOA than in COA. Occurrence of
arched arrangements may be explained by the presence of too many, potentially irrel-
evant environmental variables (ter Braak & Prentice 1988), whose removal will solve
the ‘problem’. (Do not forget that inclusion or exclusion of any variable remains arbi-
trary and one may always be tempted to play with the selections until the ‘best’ con-
figuration results.) If the number of environmental variables is low and they are
highly correlated with the axes, then the arch may completely disappear.

� CCOA is not merely an exploratory approach. A permutation test may be built into the
procedure to test whether the species/environmental correlation is significant (ter
Braak & Šmilauer 1998).

The method is illustrated using sample data taken from ter Braak (1988, Table A4). The ma-
trix comprises 30 species and 20 sites, the latter also characterized by three environmental
variables: the depth of A1 horizon in the soil, soil humidity and the quantity of fertilizer. The
analysis reveals how these environmental factors influence the species composition of the
dune vegetation.
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The site scores are weighted averages of species coordinates (Fig. 7.17). As a result, sev-
eral species are positioned outside the range of site scores. Of the three environmental vari-
ables, the A1 horizon and humidity appear to be responsible for the first canonical axis (with
correlations of 0.56 and 0.90, respectively), whereas the second axis is most correlated with
the amounf of fertilizer (r = –0.79). These relationships are demonstrated by the length and di-
rection of arrows in the triplot. The eigenvalues pertaining to the first two dimensions are 0.42
and 0.23, a little smaller than the eigenvalues from the plain COA of the same species � sites
matrix (0.53 and 0.40, respectively). It was expected because the current axes are constrained
to be maximally correlated with the linear combination of environmental variables, and the
pure and constrained axes very rarely, if ever coincide. Nevertheless, the difference is small,
as shown by the high species/environment correlations (0.925 on axis 1, 0.816 on axis 2). In
order to intepret species positions and arrow, consider the humidity variable. If the arrow is
extended in both directions and species are projected onto this line, then we get the species or-
dering according to humidity requirement: on the right side species of more humid habitats
appear, as opposed to the left side where dry-tolerants are concentrated. The higher the rela-
tive importance of the corresponding eigenvalues (25% and 15%, in this case), the more faith-
fully represented are the ‘true’ humidity requirements by this ordering.

7.4 Multidimensional scaling

A common property of ordination methods discussed thus far is that access to the raw data ma-
trix is inevitable throughout the computations. In certain situations in biology, sampling or
other observations may directly produce distance or dissimilarity matrices, as mentioned in
the chapter on cladistics (Subsection 6.2), with Sarich’s immunological distances as good ex-
amples. The question arises: if evolutionary relationships can be reconstructed from distances,
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Figure 7.17. CCOA of the
dune vegetation data (Table
A4) using � = 1. The dia-
gram displays three kinds of
points, sample site WA
scores (1-20), species (la-
beled by abbreviated
names) and environmental
variables (depth of soil
layer A1, humidity and fer-
tilizer). Therefore, the term
triplot appears most appro-
priate (Šmilauer 1992).



then is efficient dimension-reduction also possible from distance matrices? The answer to this
poetical question is of course yes; the methods of multidimensional scaling (abbreviated as
MDS) have been designed to produce an ordination of objects from their distances or dissimi-
larities.

The topic of MDS considered alone is very complicated, so our attention must be concen-

trated upon two major issues, the metric versus non-metric approaches. Metric MDS is closely

related to PCA in its linear algebraic algorithm. The non-metric MDS, on the other hand, gives

a chance to discuss an alternative solution to the ordination problem which is not associated

with eigenanalysis. In many cases, especially if the input dissimilarities do not obey the metric

axioms, non-metric MDS offers the sole possibility for ordination.

7.4.1 Metric multidimensional scaling alias principal coordinates analysis

This method has originally been suggested by Torgerson (1952) but gained wide popular-

ity thanks to Gower’s efforts (1966). He proposed the name principal coordinates analysis,

abbreviated here as PCoA (other names may also persist, for example, Digby & Kempton

[1987] prefer the acronym PCO). PCoA is metric because the resulting ordination preserves

the metric distances among the objects, as does PCA. The fundamental requirement is that as

many ordination axes are extracted as necessary to maintain the input metric distances in the

output ordination. Therefore, the main condition of its applicability is that the input distances

satisfy the metric axioms (Subsection 3.1.1) although – as explained later – minor violations

of these axioms do not hinder the interpretability of PCoA results. A typical illustrative exam-

ple of PCoA is not biological but, nonetheless, owing to its didactic clarity and its connections

to everyday life, many books start with this example (e.g., Manly 1986). Charts of road dis-

tances between large towns are often printed on the back cover of road maps. Based on such

semimatrices, PCoA is able to reconstruct the relative positions of towns, that is, the map it-

self. The success of this reconstruction depends solely on the crookedness of the roads. When

they are not entirely straight, and usually they are not, then the PCoA ordination in the first

two dimensions may only approximate the true map positions, and further dimensions are re-

quired to explain the twists and turns of the roads. In the hypothetical situation with all roads

being straight, the inherent dimensionality of the distance matrix (its rank, see Appendix C) is

only 2, so that the map of towns can be portrayed by PCoA in the plane without distortion. We

shall see that in fact PCoA will generate ‘data’ (the coordinates) from the distances in such a

way that these data reproduce perfectly the input matrix.

Consider the road distances between ten European cities (Table A7). Principal coordinates
analysis of this matrix produces a fairly faithful reconstruction of the map (Fig. 7.18) and the
approximate inter-city distances can be read from the scale on the axes. There is only a minor
problem with the arbitrary directions; the point configuration needs to be rotated and re-
flected to find correspondence with the four cardinal points. The efficiency of the two axes
shown will be discussed later in due time.

Principal coordinates analysis is performed in two main steps. The first one is an ingenious

trick; the matrix of distances is used to produce another symmetric matrix viewed as a

cross-products matrix that would result from the ‘data’ were are going to determine. This

cross-products matrix is analogous to the variance/covariance or correlation matricesin PCA
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or the Z�Z matrix in COA. In the next step, this matrix is analyzed for eigenvalues and

eigenvectors which are in turn used to calculate the coordinates themselves.

The A cross products matrix of size m � m could be obtained from the coordinates written
into matrix Xn,m, if they were known, using the formula:

a x xjk ij

i

n

ik�
�



1

(7.50)

or, in matrix algebraic terms:

A = X�X. (7.51)

The relative positions of points do not change if these ‘coordinates’ are centred. An advantage
of centring is that a trivial eigenvalue (as in COA) is automatically removed. That is,
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As a consequence of centring, all row and column totals in A are zero:

a ajk

j

m

jk

k

m

� �

 
� �

1 1

0 . (7.53)

Now suppose that the initial, squared distances, djk

2 , are expressed from the coordinates sought
using the well-known formula,
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which is equivalent to writing:
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From Formula 7.50, this expression can be rewritten as:
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Figure 7.18. Reconstructing the rel-
ative positions of ten European cit-
ies from their road distance matrix
(A6), using principal coordinates
analysis.
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Then, expressing ajk from 7.56 we obtain:

a d a ajk jk jj kk� � � �
1

2
2[ ] (7.57)

the right side of which, after substitutions not detailed here (see, for example, Pielou 1984, p.
184) can be rewritten perfectly in terms of squared distances:
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is the mean of squared sistances from object to all the other objects, and
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is the grand mean of all squared distances, including zeros in the diagonal.

The above derivation demonstrates that PCoA starts from matrix A computed by Equation
7.58. After determining its eigenvalues and eigenvectors in the familar way:

(A - �I) v = 0 (7.61)

such that the eigenvectors are of unit length and the eigenvalues are arranged in descending
order, then our interest turns towards the spectral decomposition theorem (Appendix C). This
states that the symmetric matrix A may be expressed as a product of three matrices according
to the following equation:

A = V  V�= (V  1/2) ( 1/2
V�), (7.62)

in which  is a diagonal matrix containing the eigenvalues. Using Equations 7.51 and 7.62,
the coordinates are obtained as:

X =  1/2
V�= [ �� v1, �) v2, ..., �m vm ] . (7.63)

For a deeper understanding of the principles of the method and a more thorough interpretation
of its results, one should consider the following points:

� The centred PCA of an n�m data matrix, starting from the covariances of n variables,
and the PCoA using the squared Euclidean distances of the m objects will produce
identical ordinations (only the directions, i.e., the signs may differ). This is not sur-
prising to us, since both analyses rely upon the eigenanalysis of symmetric matrices.
A COA of the same data, such that object coordinates are weighted averages of spe-

cies scores, and a PCoA based on a matrix of "2-distances of objects reveal the same
distance structure for all dimensions, but there may be slight changes if the first two
dimensions are viewed (cf. Digby & Kempton 1987).

� If the starting matrix is Euclidean, then the maximum number of positive eigenvalues
is m–1, and the mth one is zero. In this case, the diagonal of matrix A contains the
squared distances of points from the centroid. The sum of these values, tr { A }, is the
total sum of squares for the points, which may also be expressed using the pairwise
distances (Equation 3.106). This amounts to the sum of eigenvalues:
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Accordingly, the first t dimensions will account for
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percent of the entire distance structure. A two-dimensional PCoA diagram explaining
no more than 20-30% of the total sum of squares can be misleading as to the nearness
of certain point pairs. Those points falling close to each other in two dimensions may
fall far apart if the other axes are also considered. A good check of it is the minimum
spanning tree superimposed on the ordination (Subsection 5.4.3), as will be discussed
in detail in Chapter 9.

� Negative eigenvalues indicate that the starting matrix was not Euclidean. Some very
small negative eigenvalues may be ignored without risking the interpretability of di-
mensions with very high positive eigenvalues. However, large negative eigenvalues
may cause some headache to us because the dissimilarity structure can only be repre-
sented in the Euclidean space with distortion, and the PCoA results are in doubt. A po-
tential solution in such cases is offered by the method of non-metric multidimensional
scaling (next subsection).

The two dimensions portrayed in Figure 7.18 account for 46.4% and 38.3% of the total
sum of squares, respectively. Scaling the 10�10 matrix onto the plane has therefore a 84.7%
success. The remaining portion of the variance is caused by the deviation of roads from
straight airline distances. These are explained by three small eigenvalues (the associated per-
centages being 8.8, 5.8 and 0.7), the others are zero so the matrix has a rank of 5. The effi-
ciency of variance extraction is even higher for the immunological matrix (A5), because in
this case we have 63.1% and 22.7% (plus four small eigenvalues). The diagram for this sec-
ond example is not shown. It is sufficient to say that axis 1 explains the separation of monkey
from the remaining taxa, whereas on the second axis the cat is separated from the other six
species. They form a group around the origin of axes 1-2, and their differences are manifested
only in the subsequent dimensions.

The arch effect and its (flexible) shortest path adjustment. The PCoA result obtained from the
Euclidean distances computed for the rows of matrix 7.14, as the reader may guess, will ex-
hibit the same arch effect (Fig. 7.19a) as in the centred PCA ordination. It further clarifies the
point made in Subsection 7.1.6 that the arched arrangement reflects the ‘attempt’ to preserve
interpoint distances in the ordination as faithfully as possible. When the distance taken from
the first object along the gradient reaches the possible maximum, then it cannot increase any
longer. This observation led to the development of a correction algorithm by Williamson
(1978) and Clymo (1980). They proposed to recalculate the distances between objects (e.g.,
sites) which have no characters (species) in common. The distance is increased such that the
distance increments along the gradient are proportional to the previous changes. As the au-
thors suggest, a sequence of objects is to be found between the two objects in question such
that the neighbouring objects in the sequence agree in the presence of at least one species and
the sum of pairwise distances along the sequence is the minimum (‘shortest path’). The sum
of these distances will then provide the adjusted, i.e., increased distance between the end-
points of the sequence.
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For example, in matrix 7.14 objects (rows) 1 and 4 attain the maximum distance of EU14
= 4.69, and the distance is the same for the pairs 1-5, 1-6 and 1-7. The shortest path between
objects 1 and 4 is represented by the sequence 1-2-4, with associated distances 3.16 and 4.47
so that their sum, 7.63, will become the adjusted value. The modified distances EU�15 = 8.94,
EU�16 = 12.1 and EU�17 = 13.4 are obtained analogously. The efficiency of these operations is
best appreciated by comparing the PCoA results obtained for matrix 7.14 with and without ad-
justment (Figure 7.19). The analysis of the modified matrix, however, produced negative
eigenvalues as well (the list of eigenvalues is 148.37; 18.76; 1.53; 0.13; 0.00; –2.26 and
–8.52) indicating the non-Euclidean property of adjusted distance matrices. The first
eigenvalue differs by magnitude from the others, and the point positions on axis 1 reflect
pretty well the arangement along the gradient. In absolute terms, �2 is only twice higher than
�7 suggesting that the ordination along the second and all subsequent axes is distorted and
uninterpretable.

Bradfield & Kenkel’s (1987) flexible path adjustment goes a little further. In addition to

distances for which there were no common species in the corresponding objects, the distances

for which only k common species were found are also recalculated. The value of k may be

modified (k=1, 2, 3, and so on). This adjustment may prove useful in the analysis of gradients

with extremely high �-diversity (speices turnover). The occurrence of negative eigenvalues

for adjusted matrices requires future studies, however. Another ‘disadvantage’ of these ad-

justments is that the original data are required which is, in general, not so with principal coor-

dinates analysis.
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Figure 7.19a: If data struc-
ture is non-linear (matrix
7.14), then PCoA is not free
from the arch effect either.
b: Increasing the distances
along the gradient by short-
est path adjustment gives a
fairly good approximation
to the underlying gradient.



7.4.2 Non-metric multidimensional scaling

All methods discussed so far in this chapter generate ordinations by preserving the metric in-
formation in the data directly or indirectly. PCA, COA and PCoA assume the existence of lin-
ear relationships among variables, and the violation of this condition may lead to some
problems in interpreting the final results. Minor deviations from linearity are tolerated practi-
cally by all methods (robustness), but strong non-linearity will burden the result with the ‘arch
effect’. The method of non-metric multidimensional scaling" (NMDS), however, is free from
any assumptions on linearity and can be based on any symmetric distance or dissimilarity ma-
trices.

The essence of this approach is that differences between the distance values themselves,

which actually convey the metric information, are completely neglected and only the rank or-

der of distances is considered
8
. The objective is to arrange the points in a prespecified number

of dimensions (usually two) such that the rank order of ordination distances is as close to the

rank order of starting distances as possible (Shepard 1962, Kruskal 1964). In other words, the

ordering relation between the starting inter-object distances or dissimilarities (djk) and the or-

dination distances (* jk ) should be monotonous. Since the final result is presented in form of

metric coordinates, the method would be better called ‘ordinal scaling’, as Gordon (1981)

suggests. Anyway, it turns out now very clearly that the term ordination, preferred by most bi-

ologists, is less precise mathematically, because most ordinations imply a lot more than sim-

ple preservation of ordinal relationships between points.

The best known algorithm of non-metric MDS (Kruskal 1964) is iterative. An initial con-

figuration of points is specified by the user (randomly or arbitrarily generated, or derived from

another ordination) and this is refined and improved through the iteration steps until the point

where no substantial improvement is possible. Each iteration step consists of two parts, as de-

tailed below:

1) The rank order of original distances (or dissimilarities) and the rank order of ordina-
tion distances are contrasted using the technique of monotone regression (Kruskal
1964). It is not a direct comparison of two rank orders, as in rank correlation, because
the only thing examined here is how much the ordination distances should be modified
(decreased or increased) in order to reach monotonicity with the input measures. Figure
7.20 helps understand this concept. Suppose we have only four objects to ordinate, so
that there are six distances. Construct a coordinate system in which the original dis-
tances are measured on the vertical axis and the ordination distances on the horizontal
one. Each point in this diagram corresponds to a pair of objects. The two diagrams in
the figure exemplify contrasting situations. In Fig. 7.20a, only minor shifts (illustrated
by arrows) are needed to reach monotonicity, whereas in diagram b the deviations are
much larger. Apparently, the first solution is better than the second. The difference can
be expressed quantitatively as well, using the stress function proposed by Kruskal,
which operates on squared deviations:
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Indded, this is the Euclidean distance normalized to the interval [0,1]; otherwise the sum
of squares would be unbounded, rendering the regression results difficult to compare.

The value of �* jk is the amount of change necessary to modify *jk to achieve mono-

tonicity. That is, �* jk is the average of two or more distances (Figures 7.20a and b show

two such averages). If ST = 0, the order of ordination distances perfectly fits the order of
original distances and no changes need to be implemented. It is implied, of course, that
the distance values can be radically different, because there is a remarkable freedom to
modify the distances such that the ordering remains intact. The stress function informs
us quantitatively how efficient the ordination is in preserving the ordering relations
among the input distance values.

2. When the decrease of ST is smaller than a prespecified threshold , (say, 0.001) be-
tween two iteration steps, then the analysis stops and the actual configuration is taken to
be final because no significant improvement is possible any longer. Otherwise, the com-
putations continue by shifting point positions to allow further reduction in the stress.
The method of steepest descent is used for this purpose. It is essentially the computation
of the partial derivative of the stress function for each coordinate to find the ‘direction’
of moves which leads to the maximum possible reduction of the stress. The algorithmic
details are presented in Kruskal (1964) and Brambilla & Salzano (1981).
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Figure 7.20. Comparison of the original (djk) and ordination (*jk) distances using a Shepard diagram,
in two contrasting situations (see text).



After shifting the point positions, another monotone regression is performed, and so on.
When the iterations stop, the final configuration is rescaled to have a zero centroid and
unit sum of squared distances of points from the centroid. This is recommended to facil-
itate comparison with other ordinations. Actually, the final configuration can be rotated
to any degree and compressed or dilated by an arbitrary scale factor; NMDS has no re-
strictions in this regard contrary to other ordination procedures.

In addition to the ordination of points, the graphical comparison of the original and ordination
distances via the so-called Shepard diagrams is also an integral part of the result. The dia-
grams in Figure 7.20 used to demonstrate stress are examples. In a Shepard diagram, the
worse the fit of ordination distances to the original values (the stress is high), the more scat-
tered are the points. On the contrary, when the stress is very low the points are concentrated
along a diagonal line (see also Figure 7.21b).

The user of NMDS may consider the following points in preparing the analysis and in

evaluating the results:

� The starting dissimilarity matrix may be non-metric; the axioms can be violated dras-
tically. The method can be programmed to tolerate missing distance values as well. If
PCoA produces some highly negative eigenvalues, thus questioning the interpretation
of axes with positive eigenvalues of similar size, then NMDS remains the only plausi-
ble ordination method. In a comparative survey, Kenkel & Orlóci (1986) found that
NMDS + chord distance were relatively efficient to reveal two-dimensional back-
ground gradients (=’coenoplanes’). Minchin (1987) reached similar conclusions.
Other authors (Gauch et al. 1981, Digby & Kempton 1987) emphasize the limitations
and drawbacks of NMDS, relying upon the following points in their argumentation.

� The number of dimensions is determined in advance by the investigator, so there is
some resemblance to factor analysis where the number of factors is defined a priori.
We may immediately start with two dimensions, because this is easily illustrated in
papers and theses. Choosing more dimensions is also a good start, because a
four-dimensional solution may be the starting point for a 3-dimensional NMDS
which in turn can be optimized for the final two dimensions. Contrary to metric ordi-
nations, however, a k-1 dimensional ordination is not merely the omission of the kth
dimension! The relationship between ST and the number of dimensions may be dis-
played graphically in order to determine the ‘optimum’ number of dimensions. Obvi-
ously, ST decreases over increasing values of k and, as a rule of thumb, we can keep
the dimensionality where no great reduction of stress is achieved – but deciding
whether a change is great or not is always arbitrary. In most of the cases, however,
NMDS is used to end up with two dimensions, no matter how large the stress is.

� There is no general rule as to the optimal value of ST either. Many authors consider a
stress of ST = 0.05 as being very good, although our judgement must depend on the
number of points and dimensions. Often, values between 0.1 and 0.2 are still accept-
able but again, there are no general rules. Permutation and bootstrap tests may offer a
solution in the future.
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� As with other iterative procedures (RA being an exception, but see also Chapter 8 for
other examples), the final result of the computations depends on the starting configu-
ration. The analysis does not necessarily converge into the same, the best solution. It
may ‘hit’ the optimum (the global optimum) but from other starts the analysis may be
trapped in very poor local optima. This problem is circumvented by performing the
analysis from different random configurations and then maintaining the result that
provides the lowest stress value (Shepard 1980). Two-dimensional ordinations ob-
tained by metric methods may also be used efficiently to get closer to the optimum re-
sult. Other possibilities are discussed by Groenen (1992).

� Another practical question concerns the magnitude of input distances. Kruskal (1977)
reports on a study in which the distances were categorized into three groups (large,
medium and small distances) and then the effect of omitting each group upon the re-
sults was examined. It turned out that small distances had little influence, while the
omission of large distances modified the ordination most signficantly. Uncertainties
associated with small distances therefore do not appear to be critical in NMDS.

� Although linearity is not assumed at all, for gradients with high �-diversity the order
of distances can only be preserved by forcing an arched arrangement of points upon
the ordination. The method of shortest path adjustment described in the previous Sub-
section may improve the results greatly (e.g., Podani 1994).

� When attempting to interpret the axes one should bear in mind that – contrary to PCA
and PCoA axes – the correlation between NMDS axes may be different from zero! As
mentioned above, the entire configuration may be rotated which led some authors to
propose performing a PCA from the NMDS coordinates. Identification of dimensions
with external variables is therefore more problematic than in case of metric methods.

The NMDS of the phytosociological data of Table A1 was performed several times from
different random configurations, for two dimensions, and based on the Euclidean distances of
relevés calculated from the raw data. (In this regard, the example is not demonstrative of a
typical application with no raw data being available.) The result giving the minimum stress
was chosen for illustration (Figure 7.21a). ST = 0.006, indicating that the two-dimensional ar-
rangement almost completely preserves the order of input distances. The good fit of points to
a line in the Shepard diagram (Fig. 7.21b) is a confirmation of the above findings. A major
diffrence from a logically comparable metric ordination (centred PCA, Fig. 7.2) is that the
distances are more balanced in the NMDS case: large distances are diminished and small ones
are increased.9 Thus, the points are scattered more evenly in the non-metric ordination, a
striking manifestation of monotone regression and of the attempt of depicting the relation-
ships in two dimensions only. Otherwise, the NMDS result does not add anything new to the
PCA ordination. Yet, it is a useful result because application of a completely different ordina-
tion criterion confirmed our earlier findings.
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9 The results of standardized PCA are obviously incompatible with the NMDS ordination if the distances are
calculated from raw data. Such a comparison would involve the change of two factors: the ordination procedure
and the data type. If two or more things are modified simultaneously, a single comparison cannot reveal the
causes of the difference. More details will be given in Chapter 9 (‘complex comparisons’).



Other methods of non-metric MDS. The scaling algorithm developed by Kruskal is only one
possibility of arranging the points in a non-metric manner. There is a well-known modifica-
tion of the standard algorithm by Sibson (1972), called local NMDS (abbreviated as
LNMDS). In this, no attempt is made to preserve the order of all distances. Instead of this rig-
orous condition, a weaker requirement is adopted: the rank order of distances (dissimilarities)
of each object from all the others is to be preserved maximally in the ordination. Thus, for the
distance djk it is immaterial how dlm is positioned in the global ranking, but its relation to djm

and djl does have meaning. In other words, the LNMDS algorithm examines the relationships
for each object separately, hence the term ‘local’. Prentice (1977) suggests that LNMDS may
be more appropriate to reveal ecological gradients than NMDS, because a given distance dif-
ference may not be equally important ecologically at the beginning and the end of the gradi-
ent. For LNMDS, the Shepard diagram would be meaningless, of course.

Reproducing distance orderings is just one objective in non-metric scaling. There is an-

other group of methods, ‘continuity analysis’ or ‘parametric mapping’ (Shepard & Carroll

1966, Noy-Meir 1974) which utilizes a completely different criterion. A minimum number of

new dimensions are determined in which the variables (e.g., species) provide a function to

which the objects have the best fit. There is no assumption as to the properties of the functions

to be used. In this case, as always in regression, the sum of squared deviations from the expec-

tations is minimized. Continuity in this case refers to the goodness (or smoothness) of fit of

points to a multidimensional surface.
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Figure 7.21. NMDS ordination of phytosociological relevés (Table A1) (a) and the associated
Shepard diagram (b).



7.5 Separating groups: canonical variates analysis

All ordination procedures discussed thus far treat the objects as a single group, whereas CCA,
RDA and CCOA distinguish between two groups of variables. A possibility not yet exploited
is that the objects have an a priori classification into k-2 groups based on some external crite-
rion or decision rule not derived from the data directly. Then, we have the following ordina-
tion problem: linearly uncorrelated axes are to be determined so as to best explain the
separation of these groups, neglecting within-group tendencies. In other words, between
group variances are to be maximized and within-group varainces minimized by the axes,
rather than minimizing the total variance as usual in PCA (Mardia et al. 1979). If the same data
set is evaluated in both ways then, depending on the grouping of objects, the ordination axes
may differ considerably, as illustrated by the deliberately contrasting cases of Figure 7.22.
The ordination procedure that maximizes group separation has been known as discriminant
analysis or canonical variates analysis (CVA). The label CVA usually refers to applications
in which reduction of dimensionality is the primary objective. The terms linear discriminant
function analysis (LDFA) and multigroup discriminant analysis (MDA), however, appear to
be confined to cases when determining the most discriminative variables and assigning new
objects into one of the existing groups are attempted, and ordination diagrams are not even
made. In this book, the ordination objective is emphasized and the abbreviation CVA will be
used. For more traditionally oriented readers, it is noted that CVA has close connections to the
multivariate analysis of variance (MANOVA) which is not discussed here.

CVA is based on cross-products matrices computed between variables (Equation 3.86

based on centred data, or Equation 3.69 without division by m–1). These arrays are called dis-

Ordination 263

Figure 7.22. Comparison of the underlying ideas in PCA and CVA by an artificial example with two
original dimensions. Component 1 (a) coincides with the main trend of variation in the entire sample,
whereas canonical variate 1 (b, there is only one in this case) explains the optimum separation of the
two groups.



persion matrices, all having a size of n�n. Matrix T refers to the entire set of objects, regard-

less of the group membership of the objects (total dispersion). On the other hand, matrices

W1, W2,...,Wk are determined separately for each of the k groups, such that centring is done

using within-group averages. These within-group dispersion matrices may be summed, result-

ing in the pooled within group dispersion matrix, W W�
�


i

k

i

1

. The portion of cross products

which explains differences between groups is simply obtained by subtraction:

A T W= - . (7.67)

At this point, relying upon knowledge on analysis of variance from conventional biometry,
one might suggest that some sort of the ratio of between- and within-group dispersion should
be maximized. However, division of one matrix by another is not allowed (the operation
‘A/W’ does not exist in matrix algebra, Appendix C), but premultiplication of A by the in-
verse of W will provide the desired result to express proportionality of the two variance com-
ponents. The matrix thus obtained is subjected to eigenanalysis according to the following
equation:

( - ) =-1
W A I v 0� . (7.68)

The analogy with PCA becomes now obvious, with the difference that the new axes coincide
with maximum separation, rather than with maximum total variance, as already mentioned.
Further difference from PCA is that although matrices A and W are both symmetric, the prod-
uct W

-1
A is not, so that the resulting eigenvectors, although linearly uncorrelated, will not be

orthogonal to one another. As a consequence, it is not straightforward to illustrate the results
in an orthogonal coordinate system notwithstanding that the distortion may be diminished by
an appropriate transformation (Equation 7.70).

The vj eigenvectors are extracted in the usual manner: each is normalized to unit length.

The coordinates of objects on the canonical axes do not derive directly from the eigenvectors,

however. First, the canonical variates or weights, abbreviated as cj are to be determined. The

first proponents of CVA (Cooley & Lohnes 1971) advocated the use of the following transfor-

mation of eigenvectors:
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(7.69)

in which m is the number of objects (as usual), and T/(m–1) is the total variance/covariance
matrix (note that the denominator in the above equation is a scalar). As a result, the total vari-
ance will be the same on each of the canonical axes and the within-group dispersion is un-
equally reflected by the axes (Fig. 7.23a). Consequently, the scatter of groups becomes far too
elongated in the canonical space, thus overemphasizing less important dimensions. If the
eigenvectors are normalized using the pooled within-group variance/covariance matrix
W/(m–k), as suggested by Mardia et al. (1979):
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(7.70)

then the variance will no longer be the same on the canonical axes, and group separation be-
comes more pronounced. Furthermore, the contribution of each axis to within-group variance
will be identical and the point scatter of each group becomes spherical (Fig. 7.23b). The trans-
formation, called the spherizing appears to be a good choice because canonical variates are ex-
pected to maximize between group dispersion, rather than within-group varainces. The lack of
orthogonality implies much less distortion for spherical scatters than elongated ones.

Having determined the canonical variates, the coordinate of object s on axis j is obtained

using the centred data according to the equation:

e c x xjs

i

n

ij is i� �
�



1

( ), (7.71)

where xi is the mean of variable i in the entire data matrix. Centring implies that the centroid
of ordination scores will coincide with the intersection of canonical axes.

When evaluating CVA results, the following points deserve particular attention:

� The eigenvalues obey the following relationship:

� j

j j

j j
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�

�

v A v

v W v
. (7.72)

The eigenvalues are not influenced by rescaling canonical variates according to Equa-
tions 7.69-70. The ratio
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(7.73)

reflects the proportion of total between-group variance falling onto canonical variate j

(Mardia et al. 1979). q is the number of canonical variates, as explained in the next
paragraph. The denominator, i.e., the sum of eigenvalues (being equal to the trace of
the matrix product) is generally known as Hotelling’s T

2 in the literature. This quan-
tity is used to test the statistical significance of between-group differences (neverthe-
less, there is another option proposed by Bartlett). The meaning of T

2 is further
clarified in terms of the generalized distance (Equation 3.96): T

2 is the weighted aver-
age of the generalized distances between group centroids and the grand mean.
Weighting implies that the larger the group, the more influential is its distance in con-
tributing to T

2.

� The number of linearly uncorrelated, yet not necessarily orthogonal canonical axes is
q = min {k–1, n}. That is, when the number of groups is smaller than the number of
variables, k–1 axes are sufficient to explain the relationships for k groups. Therefore,
for a two-dimensional scattergram to be made we need a minimum of three groups. It
is also obvious that q cannot be larger than the number of original variables. Note also
that the number of variables cannot exceed the number of objects, since in this case
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matrix W could not be inverted (Appendix C). The larger the number of objects in
comparison with the number of variables, the more efficient is the ordination.

� If two strict conditions, the multivariate within-group normality of variables and the
homogeneity of within-group variances/covariances (homoscedascity) are satisfied,
then the canonical variates can be tested for significance. Bartlett’s test (Cooley &
Lohnes 1971) is suitable to determine whether the q-p canonical variates, remaining
after removal of the first p variates, contribute significantly to group separation. The
statistic is calculated as follows:
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(7.74)

which follows the "2 -distribution with (n – p) (k – p – 1) degrees of freedom. There-
fore, if we wish to ascertain the significance of canonical variate 1, then the above sta-
tistic is to be calculated for p = 0, and the result compared with the entries of the table

of "2 values. When the statistic exceeds the threshold at a given probability level, the
variate indicates significant group separation. If the threshold is not reached, then all
subsequent axes will also be non-significant, so that there is no need to test for the
other p values.

� The above formula includes Wilk’s  '
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(7.75)
whose value ranges from 0 (= maximum group separation) to 1 (= group centroids are
indistinguishable statistically).

The reader can ask the question now: given a small  or a significant result for Bartlett’s
test, how can we identify pairs of groups that statistically differ? This situation is analogous to
the a posteriori comparisons in univariate analysis of variance when the least significant dif-
ference (LSD) is calculated. It is not the objective of this book to provide insight into statisti-
cal hypothesis testing, yet it is noted that selecting pairs of signfiicantly different groups raises
many theoretical and practical difficulties. A method that works in the case of two groups
(e.g., F-test) cannot simply be extended to more groups, because selecting pairs on the same
criterion would lead to the accumulation of Type I errors, and therefore to false conclusions
(Bonferroni problem). The book returns to this issue, in a different context, in Chapter 9.

� CVA is a special case of CCA (Bartlett 1938, Cooley & Lohnes 1971: 249, ter Braak
& Prentice 1988). To see this, let us introduce k binary group membership variables
such that ghi = 1 if object h belongs to group i and ghi = 0 otherwise. If the left domain
variables are the original descriptors in the data set and the right domain is composed
of these indicator variables, CCA will provide results identical to those obtained by
CVA. The canonical variates are linear combinations of the original variables which
maximally correlate with the linear combinations of group membership variables.
The jth canonical correlation from CVA is obtained as:
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(7.76)

Its absolute value equals the canonical correlation calculated by CCA in the above
mentioned manner (Equation 7.23). The stronger the separation of groups along an
axis, the higher the value of coefficient 7.76.

� If R is the correlation matrix of n variables, then the correlations between canonical
variate j and the original variables (structure coefficients or loadings") are calculated
acording to:

s Rcj j� (7.77)
where cj is obtained from Equation 7.69. These correlations are not affected by the
normalization of eigenvectors (Equations 7.69 and 7.70). The above relationship
loses its validity if cj is calculated using Formula 7.70. In the alternative CCA, these
correlations correspond to the correlations of original (left domain) variables with
their own canonical variate (Equation 7.26). As a consequence of this, in the CVA or-
dination the relative point positions are the same as in the CCA ordination of the same
points based on the left set of variables.

Correlations obtained by Equation 7.77 can be used to select the original characters
best discriminating among the groups. Needless to say that these characters have high
interpretive value. The CVA scores of objects and the correlations of characters with
canonical variates can be used to construct biplots as well. In a biplot, the coordinates
may be arbitrary in a sense that object and variable positions are superimposed after
rescaling. In this case, the direction of arrows and their relative lengths are meaning-
ful only. Dillon & Goldstein (1984) proposed to multiply the correlations with the
corresponding univariate F-ratios to express the differences among variables more
faithfully.

Computer program printouts from CVA often begin with a list of univariate F-ratios. The
Fi value is the between-group variance of variable i divided by the within-group variance of
the same variable, so its magnitude gives useful preliminary information on the variables with
high discriminatory power. It is most likely that variables with high F-ratios will have the
highest correlations with canonical variates.

� The percentage share of canonical variate j from the variance of the correlation matrix
(tr {R} = n) is obtained as follows:

100 1
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� �
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n

ijs

n
(7.78)

In the rare event of (k–1) . n, the variance tr {R} is entirely accounted for by the ca-
nonical variates, so that the cumulative percentage reaches 100%. In general, how-
ever, the cumulative percentage for all variates remains below 100%.
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� The communality of variable i is derived by the formula:
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2 (7.79)

It is of interpretive value only if (k–1) < n, otherwise all communalities are 1 and
therefore irrelevant. The variance of variables with low communality is not explained
even by the entire set of canonical variates, and these variables usually convey negli-
gible information on group separation. On the contrary, variables with communalities
close to 1 are particularly important in this regard.

� In the canonical space, it is useful to show the position of the centroids of groups as
well. If the coordinates of objects are derived by Equation 7.69, then the point scatter
will be approximately spherical for each group and the isodensity circle of the given

group can be drawn around the centroid. Its radius is obtained as r = 4 22
2" �,

(Giri 1977, see also Dillon & Goldstein 1984). At the significance level of � = 0.05,
which is most commonly adopted in biology, the radius is 2.45 units. The isodensity
circle is expected to contain 95% of the members of the group, considered now as a
statistical population. As seen, the radius is independent of the number of objects ana-
lyzed, so all groups will have the same isodensity circle. There is another circle, with
variable radius, which may also be drawn into the ordination diagram. This is the con-

fidence circle which is expected to contain the ‘true’ group mean with a probability of

100(1–�)%. Its radius is r =
" �2

2 1 2

,

mi

�

�
�
�

�

�
�
� , where mi is the number of elements in group i

(Mardia et al. 1979). Needless to say that both types of circles are meaningful only if
the conditions of multivariate normality, the homogeneity of variances/covariances
and random sampling are satisfied.

The most straightforward illustration of CVA is via by the Iris data set, because these
scores were used originally by Fischer (1936) when introducing the methodology of
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Table 7.2. A summary of the CVA of Iris data (Table A2). The canonical variates are normalized ac-
cording to Equation 7.70; the other values of the table are not affected by normalization.

Variable F - ratio Correlation
with variate 1

Correlation
with variate 2

Canonical
variate 1

Canonical
variate 2

Communality

Sepal length 118 –0.791 0.206 0.723 –0.107 0.668
Sepal width 48 0.521 0.765 0.157 0.224 0.857
Petal length 1180 –0.985 0.046 –0.212 –0.834 0.973
Petal width 960 –0.973 0.221 –0.285 –0.274 0.996
Canonical
correlation

0.985 0.475

Eigenvalue 31.83 0.29
Between-grop
variance (%) 99.09 0.91
Contribution
to correlation 70.36 16.97



discriminant analysis. There are three a priori groups, the three species, so that CVA can be
used to evaluate their separation based on the four floral measurements. The difference be-
tween normalizations (7.69) and (7.70) is striking in Figures 7.23a and b (if the scale is the
same on both axes, of course).

Iris setosa separates clearly from the other two species, irrespective of the method of nor-
malization. This finding confirms our previous results obtained by PCA (Fig. 7.7) and fuzzy
c-means clustering (Fig. 4.9). For I. versicolor and virginica, the separation is stronger on
CV1 than on any PCA axis. Correspondingly, the first canonical correlation is very high and
the between-group variance is almost completely explained by CV1 (Table 7.2). The second
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Figure 7.23. The CVA ordination of three Iris species (Table A2) using two methods of normalization
a: normalization according to the total dispersion (Equation 7.69); b: normalization with the pooled
within-group dispersion (variance/covariance) matrix (Equation 7.70). Symbols: + Iris setosa, O: Iris
versicolor, *: Iris virginica.

Figure 7.24. The CVA biplot of
Iris data. The species centroids are:
1: I. setosa, 2: I. versicolor, and 3:
I. virginica. Isodensity circles cal-
culated for the two canonical vari-
ates are drawn around the cent-
roids. The discriminative power of
each variable is ascertained if the
corresponding arrow is elongated,
and the circles are projected onto
the line thus obtained. Compare
the results with the PCA biplot
(Fig. 7.7)!



canonical correlation may also appear high by itself, but its associated between-group vari-
ance is less than 1%! Assuming that all conditions of a significance test are met, the results of
Bartlett’s test are worth examining. For both axes, we obtain that X

2 is 545.2 (the critical "2

value at d.f. = 8 and � = 0.05 is 15.5). It is therefore very unlikely that the three species
(groups) are derived from the same statistical population and, in other words, there are signif-
icant differences between the species. After omitting axis 1, we obtain that X

2 = 37.2, which
is still significant (d.f. = 3, � = 0.05, critical "2 = 7.85), showing that axis 2, although much
weaker than axis 1, is also meaningful as far as species separation is concerned. These find-
ings are confirmed by the isodensity circles (Fig. 7.24): I. setosa is entirely separated,
whereas the other two species overlap on axis 1. On axis 2, I. versicolor appears to be dis-
criminated weakly. The confidence circles are omitted from the figure because their radii are
very small, indicating clear-cut separation of centroids as a further confirmation of the results
of Bartlett’s test.

In view of the CVA results, the evaluation of original measurements provides useful addi-
tional information for the taxonomist. The three species are best separated by the petal mea-
surements (Table 7.2 and Fig. 7.24). They have very high correlations with CV1 and their
F-ratios are also high. The length of sepals is less discriminative, and the separation of spe-
cies is the weakest for sepal width. These are also apparent from the variable/variate correla-
tions. The communalities agree well with the above interpretation.

7.6 Morphometric ordination

Different analyses of Iris floral characters have already touched upon a special field of biolog-
ical data exploration, widely known as morphometry. The primary objective of this approach
is the evaluation of the variability of shape and size of biological objects, with emphasis often
placed on the separation of inherent size and shape components of biological forms. Admit-
tedly, the methods of reducing dimensionality discussed thus far may be applied to these cases
with considerable success. In fact, two decades ago ordination methods were almost exclusive
in multivariate morphometric research, as demonstrated vividly in the classical monograph by
Blackith & Reyment (1971). Recently, however, many highly specialized morphometric tech-
niques have become available, allowing a much more sophisticated analysis and a more ex-
haustive biological interpretation of results (Rohlf & Marcus 1993). These methods – in
addition to their primary goals – can be applied to data exploration in taxonomy and evolu-
tionary biology, and most certainly deserve at least a short section in this book. Somewhat
analogously to the current ‘upheaval’ in molecular cladistics, the revolution in morphometrics
has resulted in a highly diversified and elaborated subject which is not easy to follow in some
places. Therefore, in agreement with the title of this chapter, the present discussion will centre
around the relationships between ordination and the new methodology only. Ample refer-
ences will be given for the information of those wishing to get a much deeper insight into this
rapidly developing area.

In the Iris studies – exemplified earlier in this chapter –, perhaps it escaped our attention

that we were concerned with distance values: the variables were length measurements be-

tween particular points (apex, base, lateral extremes) determined unambiguously on the sepals

and petals. This is the case in many other morphometric studies: the characters are provided

by distances measured between points identified according to some obvious feature of shape
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(e.g., endpoints or crossings of certain structures). These points may be referred to as land-

marks.
11

Interpoint distances, however, do not convey sufficient information for a faithful re-

production of the original shape from the data. For a more representative and exhaustive

elaboration of the entire shape of the biological objects, new and more sophisticated data types

need to be introduced. “Sophisticated” does not always mean that the required methods are

radically different from those we already know from the previous sections. Rather, it refers to

substantial differences in data types, data collection and processing, whereas the analytical

methods themselves are not always new for us. It is emphasized that the new data types – not-

withstanding their advantages – do not render the ‘traditional’ distance-based morphometric

approach entirely obsolete, as pointed out by Reyment (1990) and Marcus (1990, 1993).

7.6.1 Contour analysis

A most striking feature of the shape of organisms is their outline or contour line. Having ex-
pressed outlines in numerical form, their analysis becomes straightforward. Rohlf (1990a)
provides a review of methods designed to fit functions to entire outlines (closed contours) and
to boundary curves drawn between two landmarks (open countours). The parameters of the
functions thus obtained are in turn taken as input data to conventional multivariate procedures.
This approach completely neglects all characteristics within the outline and is thus restricted
to objects that are extremely poor in interior features, such as shells of ostracods and some bi-
valves.

Our attention will be focused upon shapes characterized by closed contours, because in

morphometric analysis these are more important – and more common – than the open curves.

For each shape, a landmark is identified such that its biological meaning is exactly the same

for all other shapes; that is, all these points are homologous. Starting from the pivot landmark,

several points are located systematically along the curve such that the last point coincides with

the first. The shapes are then described according to the length values pertaining to radii

drawn from the centroid (or other central point) to the outline. Finding another true landmark

on each object could also be very useful, because two landmarks are required to place the ob-

ject in an orthogonal coordinate system unambiguously so as to allow their meaningful com-

parison. In this case, the x, y coordinates of points selected at regular intervals along the curve

are used as shape descriptors. The mathematical tools for analysing shapes based on radius

lengths and coordinates are summarized briefly as follows:
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Figure 7.25. Radii drawn at
equal angles to characterize the
contour line of an Unio pictorum
shell.

11 More precisely, a landmark is to be consistent with biological homology, and differences between extreme
points are not always homologous. In such cases, reference is made to pseudo-landmarks (Rohlf & Marcus
1993). For a refined classification of landmark types, see Bookstein (1991).



� Some relatively simple12 contour lines are described most easily by the radius func-

tion (Scott 1980, Lohmann & Schweitzer 1990). The reference line is the radius
drawn from the centroid to the pivot landmark. From this, further radii are taken at
equal angles and drawn to the contour line. The number of such radii is, say, p (Fig.
7.25). The radius function describes the relationship between the angle of rotation and
the length of the corresponding radius in form of the pairs of values [r , /]. The shapes
are fairly well approximated by p length scores, especially if p is high. No formula is
determined explicitly for the radius function, however. Instead, the length data are

summarized in a p � m matrix (m is the number of outlines) which is in turn subjected
to standardized PCA. This is a peculiar application of PCA, because the correlation
matrix is calculated among the objects, rather than the variables. More details of this
so-called eigenshape analysis are discussed in Lohmann & Schweitzer (1990). Of the
several resulting PCA scatter diagrams, the most interesting is perhaps the ordination
of objects to which the component correlations are superimposed. The procedure is il-
lustrated below by the eigenshape analysis of some European and Asian Unio

(Mollusca, Bivalvia) shells.

Four species are included in the study: three specimens collected from different localities
will represent U. pictorum as well as U. crassus, whereas a single specimen represents each
of U. tumidus and U. elongatulus (Table A8). Eigenshape analysis of radius data yielded a
very high first eigenvalue, accounting for 97% of the total variance. This exceptionally large
percentage is a reflection of the high overall similarity of contour lines. The smallest correla-
tion was measured between U. pictorum and U. crassus (COR = 0.926), whereas the highest
value was between U. pictorum and U. tumidus (COR = 0.99). The large first eigenvalue is a
general size component, and on axis 1 all the eight shapes have high scores (between 0.971
and 0.994), so that this unipolar component has no interpretive value and is not illustrated.
Thus, although they explain a small portion of the variance, the second and third components
get into focus (Fig. 7.26a).
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Figure 7.26. Principal component analysis of Unio contour lines, a: based on correlations applied for-
mally to compare Unio individuals directly (shape components 2 and 3), b: based on correlations be-
tween radii (components 1 and 2). Note that in figure b, the scale radically differs on the two axes!
12 The meaning of ‘relative simplicity’ becomes more clear later on, in the discussion of the third procedure.



One may raise the possibility of a ‘conventional’ standardized PCA with the radius
lengths as variables and the shell specimens as objects. In this case, the first eigenvalue is still
high, although smaller than in the above eigenshape analysis (91.3%). The second component
accounts for a mere 5.2% (Fig. 7.26b).

The data analyst is faced with the dilemma: which result should be considered superior in
an ordination study of Unio shapes? An obvious disadvantage of eigenshape analysis is that in
our case the depicted point scatter accounts for only 2% of the total variance, so that a large
portion of total variation falls to a general size component. The first two axes of standardized
PCA, on the other hand, explain 96.5% such that the individuals are reasonably evenly dis-
persed in the ordination space. None of the ordinations appear to support high
within-population homogeneity, however, suggesting that outlines by themselves are insuffi-
cient for an un- ambiguous discrimination among species.

� The radii as defined above can also be subjected to Fourier analysis (harmonic analy-
sis). This approach utilizes the mathematical law that – accounding to Fourier, the
great French mathematician – any ‘curve’ can be reproduced according to a set of
simple wave functions (harmonic functions, Rohlf 1990a). The length of a radius r( )/ ,
which is at an angle of / to the reference line, may be approximated by the following
series:
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Fourier-analysis estimates for k harmonic functions the parameters ai and bi, which in
turn can be used as an abstract and indirect representation of the shape. The quantity
h a bi i i� �2 2 is the harmonic amplitude, the relative’contribution’ of the ith function
to the contour line. The Fourier coefficients derived for several objects, assuming that
the reference radius is always directed towards a homologous landmark, will provide
a raw data matrix, a starting point for further multivariate analysis. If there is no ho-
mologous landmark, only the harmonic amplitudes can be considered for further anal-
ysis, but this implies information loss. The harmonic functions themselves rarely
have biological significance, but they are appropriate for descriptive and, conse-
quently, for ordination purposes (Rohlf 1993a).

In the evaluation of Unio valves, the standard PCA of Fourier coefficients produces a
somewhat surprising result, as far as the relative magnitude of eigenvalues (�1= 32%, �)=
23% and �3 = 16%) is concerned. The scatter diagram (Fig. 7.27) does not differ that much
from the previous results, yet it seems more readily interpretable than those. U. pictorum sep-
arates from the other species on the first axis, and U. crassus forms a relatively compact
group on the opposite end of this axis. However, the separation of U. elongatulus is less em-
phasized than in Figure 7.26b. U. tumidus takes an intermediate position between pictorum
and crassus in all ordinations.

� A potential ‘drawback’ of the above two procedures is that the definition of the
barycenter (centroid) is completely arbitrary biologically, and the use of another,
more logical reference basis could easily provide diverging results. And to more com-
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plicated shapes, in which the same radius intersects with the outline twice or more
times, eigenshape and Fourier analyses are not suitable. The simplest, and perhaps the
best-known resolution of these problems is offered by the shape function proposed by
Zahn & Roskies (1972):

0 0*( ) ( )t t t� � . (7.82)

In this, t is the distance from a starting landmark (zero point) along the outline which

is normalized to have a total length of 21 radians. 0(t) is the angle between the tan-
gent vectors drawn at point 0 and at the point with distance t from the zero point, again
in radians. The function yields zero for any point along a circle, so that for other
shapes the divergence from the circle, as the reference basis, is measured. Systematic
‘sampling’ of the outline is guaranteed by taking equal short intervals alng the con-
tour, rather than by taking radii at equal angles. It is advisable to use at least 100 such
segments (Reyment 1991). The values of the function 0* ( )t are collected in a data
matrix which is then subjected to eigenshape analysis (Lohmann 1983, Lohmann &
Schweitzer 1990). The alternative discussed in the previous paragraph is also avail-
able here: the values are evaluated by Fourier analysis and subsequently by ordination
procedures (Rohlf 1993a).

The calculation of the Zahn-Roskies shape fuction is illustrated on the example of the
square (Fig. 7.28a). Starting from an arbitrary apex, 12 points are determined at equal inter-
vals. Since the outline of the square is normalized to 21 radians, this interval equals 21/12 =
0.52. The reference line is the tangent drawn to point 1. The function 0(t) is monotonically in-
creasing (Fig. 7.28b), whereas the function 0*( )t oscillates around a line representing the circle
(Fig. 7.28c), thus demonstrating the regular change of the difference between the circle and
the square. It is easy to see that the value of 0*( )t is unaffected by the rotation of the square.
The method, however, is not free from some problems. In addition to finding the homologous
landmark, it is essential whether the contour lines are evaluated clockwise or coun-
ter-clockwise (in the case of the square, the direction does not matter, though).
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Figure 7.27. Standard-
ized PCA of Unio valves
based on Fourier coeffi-
cients fitted to the data of
Table A8.



� A more general approach to the evaluation of contour lines is based on the so-called
elliptic Fourier-analysis which starts from positions of points along the outline trans-
formed into Cartesian coordinates. The ‘independent variable’ is the same as before:

the distance along the diagonal normalized to the interval of [0,21]. The function

sought describes the simultaneous change of the coordinates (i.e., 2x and 2y) accord-
ing to a set of superimposed harmonics (Kuhl & Giardina 1982). For each harmonic
function, four Fourier-coefficients are derived (two for the horizontal, two for the ver-
tical coordinates) and two additional constants are also required. The long and com-
plicated formulae are not shown here, the reader may find them in Rohlf (1990a,
1993a). A relative advantage of the method is its independence from the direction of
measurement and even from the position of the reference landmark (at least in its
computerized realization in program EFA, Rohlf & Ferson 1992). The points need
not be spaced evenly along the outline, and the algorithm applies to very complicated
contours: crossings of the outline are allowed! Some illustrative applications to bio-
logical ordination are found in Rohlf & Archie (1984) and Ferson et al. (1985).

7.6.2 The use of landmarks in ordination

The analysis of contour lines has two fundamental disadvantages. The first, already men-

tioned problem is that features falling within the outline are completely neglected. Further

criticism concerns the biological interpretation of the change of shape which is almost impos-

sible in contour analysis (Bookstein 1991), because most measurement points are arbirarily

placed. A solution is that we restrict ourselves to (biologically meaningful) landmarks se-

lected over the entire shape; the data obtained this way are appropriate to conventional

multivariate analyses and at the same time they allow more sophisticated investigations by the

revolutionary methods of ‘geometric morphometry’. In all cases, the objects are placed into a

rectangular coordinate system and the landmark positions are expressed as vertical and hori-

zontal coordinates.
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a b c

Figure 7.28. Determining the Zahn-Roskies shape function for the square. a: Twelve points selected
on the outline. A is the tangent vector at point 1, B is the tangent vector at point 4, and C is the tangent
vector at points 8 and 9. b: The function 0(t),. c: The function 0*(t) for 12 points.



� Comparison of shapes is possible through the direct comparison of coordinates. Two
distant landmarks are chosen and the line segment between them is taken as the refer-
ence basis (‘baseline’). Then, all shapes are placed into a coordinate system with their
baseline coinciding the x axis, between the values of –0.5 and 0.5. Such a standard-
ization produces Bookstein’s (1991) shape-coordinates. If we have p landmarks, then
the input for multivariate analysis incorporates 2(p–2) values for each object. An ex-
ample for the application of Bookstein coordinates through discriminant and cluster
analyses of mole cranial features is found in Loy et al. (1993), showing well the rela-
tive merits of this approach.

� Coordinates represent the direct input to another group of morphometric algorithms,
the superposition methods as well. The task is the rotation and rescaling of one object
to achieve the best fit of its homologous landmarks to the other object to which it is be-
ing compared.13 The distance between two objects is conveniently defined as the sum
of squared differences between homologous landmarks. This sum can be calculated

for every pair of objects, resulting in an m�m distance matrix, a starting point for con-
ventional multivariate analyses (e.g., Chapman 1990, Sanfilippo & Riedel 1990). The
superposition methods have several variants; the reader is referred to Rohlf & Slice
(1990), Chapman (1990) and Rolhf (1990b) for an evaluation of their relative merits
and technical details. As the latter author concludes, superposition methods are most
suitable to shapes characterized by relatively few landmarks, or to cases with differ-
ences distributed approximately randomly over the landmarks.

� Direct application of coordinates characterizes the most recent, synthetic approach to
geometric morphometry. The roots can be traced back to Thompson’s (1917) famous
book in which shape changes of biological objects (e.g., skulls, leaves) are illustrated
using a regular grid, as in Fig. 7.29. Since then, Thompson’s attitude has for a long
time been appreciated only at a descriptive level in different interpretations of biolog-
ical shape changes. A few years ago, however, it turned out that statistical mechanics
has many sophisticated tools for evaluating the change of shape, and their application
to plant and animal forms facilitates biological interpretation greatly. The introduc-
tion to this subject would require large space and a more thorough knowledge of
mathematics, so that in this book only a short discussion is presented. These tools ap-
pear in ordination context usually as a byproduct of shape analysis, nevertheless they
deserve at least a short subsection for completeness. For more details, the reader is re-
ferred to Bookstein (1991), Rohlf & Bookstein (1990), Marcus et al. (1993, 1996) and
Klingenberg & Bookstein (1998).

Geometrical morphometry distinguishes between two main components of shape change.
The affine (or uniform) changes include all transformations associated with the size, and the
rotation and reflection of the object as well as the homogeneous compression or elongation of
the shape in one direction (Fig. 7.29b). Non-affine changes or deformations have no particular
direction, they are inhomogeneous, affecting each landmark differently. As a result, a regular
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13 The method has been generally known as Procrustes analysis in the literature of multivariate statistics and has
been used most commonly for the comparison of ordinations (the landmark positions in fact represent special
two- or three-dimensional ordinations). The details of Procrustes analysis are discussed in Chapter 9.



or systematic shape becomes irregular (Fig. 7.29c). If the set of study objects includes a refer-
ence object, such as a holotype or an average object obtained by generalized Procrustes analy-
sis (Subsection 9.4.3) of all the other objects, then geometric morphometry may be used to
separate these two components of change, often visualized by special ordinations.

As a good start, let us imagine a very thin and smooth metal plate with several points cho-
sen on its surface, just like landmarks on biological objects. After bending this plate a little
bit, we find that the points are shifted in vertical direction. The idealized energy necessary to
this deformation is expressed by the binding energy matrix, L

-1. This p � p matrix (where p is
the number of points) is generated by inverting a matrix obtained from the interpoint dis-
tances and the coordinates of the reference object (see Rohlf 1993b: 137-138). For an affine
change the energy is zero, since no bending was performed, only elongation or compression.
The bending energy matrix can be formally computed for the reference object and a target ob-
ject, as a special case. It is not to say that biological objects have a similar behaviour to metal
plates, of course, so that this application is only formal. The L

-1 matrix and the coordinates of
the target object will provide the so-called. thin plate spline, an interpolation function which
describes the mapping of the reference object to the target in terms of homogeneous and
inhomogeneous components.14

The spectral analysis (Appendix C) of the energy matrix provides orthogonal vectors
(‘principal warps‘); these are mathematical constructs analogous to principal components.
The principal warps explain the deformation of shape at different geometric scales and can
even be applied as taxonomic characters (Rohlf & Marcus 1993). The last three eigenvalues
are always zero, so the associated vectors are unnecessary. The differences between the re-
spective coordinates of the target and the reference objects, the principal warps and the
eigenvalues are used to derive the ‘partial warp scores’ of the target object. There are p-3
such scores for both the x and the y axis (Rohlf 1993b).

If our sample contains m objects, the partial warp scores are determined for each object
separately. These scores are summarized in a vector of length 2(p–3), and then written into
matrix W of size m � 2(p–3). This is the point where the standard multivariate techniques,
such as principal components analysis, are called for. A PCA from matrix W (a method usu-
ally called the relative warp analysis in the literature) generates linear combinations of the
differences between the objects and the reference. The PCA scores are then used to draw a
scatter diagram of individuals. The use of PCA is not compulsory, of course, because canoni-
cal variates analysis or cluster analysis can also be performed on such input data. According
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Fig. 7.29. The shape change of a hypothetical leaf (a) shown in the transformation grid of Thompson.
b: homogeneous change, c: deformation, d: the superposition of the two types of change.

14 Of course, there is a three-dimensional case as well, with x, y and z coordinates, an opportunity not discussed in
this book.



to a new proposition (Zelditch et al. 1995), cladistic analysis is also conceivable, after an ap-
propriate transformation of coordinates. As a performance test, Naylor (1996) simulated the
evolution of fishes and found that one of the trees obtained by ‘morphometric cladistics’ was
in complete agreement with the true tree – indicating the future potential of this approach.

7.7 Literature review

The literature of ordination methods, like that of clustering, is extensive and difficult to encom-
pass, even though we restrict ourselves to biological applications. In any case, if the title of a
handbook includes the term “multivariate analysis”, then it is granted that exploratory ordina-
tion procedures are discussed in great detail in that book. Reference to “multivariate statistics”,
on the other hand, will almost always indicate relationship to the concepts of formal statistics,
such as hypothesis testing, multivariate normality and the like, a subject beyond the scope of
the present book. The number of works discussing biological ordination in general is very high,
therefore only a few can be mentioned here. For ecologists, the pioneering volumes edited by
Whittaker (1973, 1978) still provide much useful information, especially on the ‘golden age’ of
numerical vegetation science. For ecologists, Greig-Smith (1983) and Kershaw & Looney
(1985) are also very useful. Gauch (1982) introduces the reader into the topic of ordination al-
most completely avoiding any mathematical formalism, with less success, I think. Advanced
level introductions include, in order of difficulty, Ludwig & Reynolds (1988), Pielou (1984),
Orlóci (1978), Legendre & Legendre (1987) and Digby & Kempton (1987). Notwithstanding the
increased importance and popularity of certain ordination techniques, there is no book devoted
exclusively to their ecological applications. There have been review articles (e.g., ter Braak &
Prentice 1988) and good collections of relevant articles (ter Braak 1996). For taxonomists,
Sneath & Sokal (1973) may be still considered as a good summary, whereas the short book by
Dunn & Everitt (1982) remains at a more introductory level. More recent taxonomic mono-
graphs appear to forget about ordination, with the exception of Stuessy (1990). This is appar-
ently a result of the overwhelming dominance of the tree-making approaches in contemporary
systematics (but see a recent debate on the potentials of ordination in cladistic analysis
[Parnell & Waldren 1996, and Faith 1997]). Of the more general – and more mathematical –
texts, the exploratory function of ordinations is emphasized in Gordon (1981), whereas Cooley
& Lohnes (1971), Mardia et al. (1979), Chatfield & Collins (1980) and Dillon & Goldstein (1984)
provide a more formal, theory-oriented treatment of the subject matter.

Principal components analysis is introduced in great detail by Jolliffe (1986), although his
examples are mostly non-biological. The relationship between PCA and other multivariate pro-
cedures, and the possibilities of their joint application, are deeply evaluated in this book. The
discussion of PCA is of course part of all books on multivariate analysis, and there are hun-
dreds of them. The illustrative examples by which the fundamentals of PCA are explained to
the novice vary from book to book. Contrary to this chapter, for example, Jongman et al. (1978)
discuss PCA as a special case of the least squares method. Their iterative algorithm provides a
good alternative to the geometric approach. Rao (1973; see also Bookstein 1991:39) points out
that the matrix product of the vectors of component scores (whose sum of squares is made
equal to the eigenvalue) yields a matrix of rank 1, whose elements provide the minimum sum of
squared deviations from the starting covariance matrix. A recent summary of PCA is Jackson
(1991), with a thorough discussion of biplot techniques, and an even more recent treatment of
biplots is found in Gower (1996).

Although the topic of factor analysis was very briefly mentioned in this book, it does not
mean that the method is always neglected in the biological sciences. For instance, Cattell
(1978) focused his interest to biological applications only. Unfortunately, the title of Reyment &

278 Chapter 7



Jöreskog’s (1993) book (“Applied Factor Analysis in the Natural Sciences”) is somewhat mis-
leading, since the subject is more general in scope, while factor analysis sensu stricto (“True
factor analysis”) is discussed in a subsection only. Although Wright (1954) clarified quite early
the differences between FA and PCA, the terminological confusion over ‘factors’ seems to pre-
vail...

The only detailed treatment of canonical correspondence analysis, with plenty of biological
examples, is Gittins (1985). This book lists many references for further orientation to those still
interested in this fairly old procedure. The ‘bible’ of correspondence analysis for the Eng-
lish-speaking world is Greenacre (1984, but see also van Rijkevorsel et al. 1988), although
other languages – and the pioneers of the area – should be also mentioned (Benzécri et al.
1973).

The popularity of canonical correspondence analysis has increased rapidly in the past de-
cade. This becomes most apparent if one examines the complete bibliography of its applica-
tions between 1986-1993 (Birks et al. 1996). According to Reyment (1991), the method is not
necessarily restricted to recent ecological objects, a statement supported by a relevant
paleoecological example. Canonical variates analysis is discussed in most books on
multivariate analysis, especially in Mardia et al. (1979), although the exploratory function of this
method is sometimes subordinated to the statistical aspects of discmininating between groups.

The classical text of morphometric ordination is Blackith & Reyment (1971), a book still use-
ful for all wishing to get insight into the early approaches to the evaluation of biological form.
The developments since then have been reviewed in detail by Reyment (1990, 1991) himself,
who makes the point that, although ordination procedures are less emphasized in the
morphometric practice, they are still useful especially in the analysis of landmark data (see also
Marcus 1990, 1993). Bookstein takes the opposite view, repeatedly underestimating the im-
portance of descriptive, ordination-oriented exploratory approaches in morphometric analysis
(e.g., Bookstein 1990, 1991, 1993). He asserts that ordination implies information loss at best,
and is unsuitable to the biological interpretation of shape changes. He supports very strongly
the discipline of geometric morphometry in his introductory – yet not easy – text (Bookstein
1991), which is a must for all readers interested in the new developments of shape analysis.
Nevertheless, ordinations along with special axes remain of central importance even in this
book. Novel results in the area are summarized in Marcus et al. (1996). The literature of geo-
metric morphometry is still limited to a few books, monographs and conference proceedings,
shown vividly by the fact that they are referred to very often by the color of their cover (‘blue
book’, orange book’, ‘black book’, Klingenberg & Bookstein 1998 will probably be the ‘light
gray’ softcover). It is granted that the explosive development of geometric morphometry will
soon run out of the available colours...

7.7.1 Computer programs

The general user of multivariate methods is very well treated by ordination software. Commer-
cial statistical packages almost always contain some ordination techniques, even if the docu-
mentation does not always emphasize the exploratory aspect of the methods. In addition, there
are many, more specific programs designed to biological applications. In Table 7.3, I list some
available packages, admitting that this selection is far from being complete. Interested people
can easily find more on the internet (see Appendix B).

When evaluating the performance of an ordination package, several aspects should be
considered. For example, before purchasing a program it is advisable to get information on its
graphical capabilities, because numerical results do not stand on their own in ordination stud-
ies. In PCA and CoA, for example, it is extremely important to have an immediate picture of
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biplots and joint plots (as in SYN-TAX). Program CANOCO, which is famous for its wide selec-
tion of (metric) ordination options (with detrending), has no own graphic routines; the job is left
to CANODRAW 3.0 (Šmilauer 1992). This program produces high quality graphics (including
biplots, triplots and other diagrams) that can immediately be used in publications and theses.
CANOCO is especially recommended for users of canonical correspondence and redundancy
analyses, while conventional metric ordinations (e.g., PCoA) are more easily accessible from
other packages. The advantage of the graphic output of Statistica is its flexibility; any parts of
the diagrams may be formatted individually, Further factor to consider is user friendliness: ease
with the selection of options, the format of menus and windows, on-line help, and so on. In this
regard, Statistica is a good choice. It includes several variants of factor analysis, distinguished
well from PCA, but some other important procedures are missing (Table 7.3). (Non-metric mul-
tidimensional scaling is simply designated as multidimensional scaling in the user’s manual,
forgetting about the metric variant.) The command language of BMDP is perhaps the most
cumbersome. The hardware requirement of programs is also essential, those listed in Table
7.3 require a DOS/WINDOWS environment.

Some other programs not mentioned in the table also deserve the biologists’ attention.
Orlóci (1978), Orlóci & Kenkel (1985) and Ludwig & Reynolds (1978) provide BASIC source
code for many ordination methods. A list in FORTRAN is presented in the manual of
ORDIFLEX (Gauch 1977), a general ordination package. The MULVA-5 program-package
(Wildi & Orlóci 1996) includes many ordination methods, and is best suited to the large data ta-
bles used by ecologists and phytosociologists. The most popular program for detrended corre-
spondence analysis is still DECORANA (Hill 1979b), but CANOCO is more up-to-date in its
options and user friendliness.

Morphometric data analysis is a completely different matter. Many programs have been de-
signed to generate input data for morphometric ordination from images or coordinates of land-
marks. A Macintosh program for eigenshape analysis has been developed by MacLeod
(1993). Modern methods of geometric morphometry are provided by tpsRelw and tpsSplin,

developed for WINDOWS systems. Some of the procedures are available through the NT-SYS

package as well (further information may be obtained through the Internet, Appendix B).
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Table 7.3. Ordination procedures in computer progam packages.

Method Statistica SYN-TAX NT-SYS CANOCO NuCoSA BMDP

Principal component analysis ++ ++ ++ ++ ++ ++

Factor analysis ++ ++

Canonical correlation
analysis

++ ++ ++ ++ ++

Redundancy analysis ++ ++

Correspondence analysis ++ ++ ++ ++ ++

Canonical correspondence
analysis

++
+

Principal coordinates
analysis

++ ++ ++ +

Non-metric multidimensional
scaling

++ ++ ++ +

Discriminant analysis ++ ++ ++ ++ ++



7.8 Imaginary dialogue

Q: Apparently, you do not claim that all ordination procedures are covered in this boo. I sup-

pose it would be impossible anyway. Still, there is a procedure often mentioned in the ecologi-

cal literature but I do not find any reference to it here. It is the so-called polar ordination.

What on earth is this, and why is it neglected?

A: Polar ordination has only historical importance; it has been very rarely used recently. The
method was invented by ecologists (Bray & Curtis 1957) in the early period of the computer
age when more advanced techniques, such as PCA, were unknown to the wide audience for
obvious reasons. In polar ordination, the farthest two objects are selected first, based on the
pairwise distances, and then these two objects are chosen as endpoints of the first ordination
axis. It is implicitly assumed that there is a strong underlying gradient in the data, which is best
represented by the most distant pair of sites. The position of all other objects is determined ac-
cording to their distances from the endpoint objects. Having determined the first axis, a sec-
ond axis is derived by selecting the next pair of most distant objects. More details are
presented in Gauch (1982). Nevertheless, I warn you not to waste too much time on this: the
method is obsolete, no question. If you still want to try it, you can find its program in the
NuCoSA package (Tóthmérész 1996).

Q: ...other procedures that would deserve at least a sentence?

A: There are many procedures that I did not even mention, for example, Gaussian ordination,
maximum likelihood ordination, hybrid nonmetric multidimensional scaling, and so on. But
do not forget, this book is not only on ordinations!

Q: I am aware of fuzzy classifications, and I wonder if there exists fuzzy ordination as well.

A: I do not understand the motivation behind this question; perhaps you ‘extrapolate’ from the
previous chapters, as you did several times before. You might think that in a ‘fuzzy ordina-
tion’ the positions of points fluctuate within certain limits, on the analogy of fuzzy cluster
membership weights. As far as I know, there is no method that would provide such uncertain
scores directly. However, the consensus ordinations to be discussed in Chapter 9 (see Fig.
9.18) can be understood as fuzzy ordinations. In addition to this, ordinations can be con-
structed on the basis of fuzzy logic. Roberts (1986) raised first the suggestion that fuzzy sets
can be used as input to ordinations. These are, in some sense, direct ordinations, because these
fuzzy sets must summarize known or assumed relationships between species and the environ-
ment.

We could go even further: ordinations can be obtained even from classifications! Feoli &

Zuccarello (1986) have some interesting suggestions, although their method did not receive

many applications.

Q: To put it shortly: ordination or classification?

A: Yes, there were times in plant ecology when this question was thought to be appropriate.
Recall the infamous discussions about the continuity of vegetation in the sixties; proponents
of clustering and advocates of ordination appeared to take irreconcilable positions in this de-
bate. Nowadays, there has been a general view that the joint application of ordinations and
classifications tells us more on data structure than any method used individually. If you insist
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on some order of importance, I can assure you that we should never classify without checking
the results by ordinations, whereas it is not essential the other way round: ordinations can
stand on their own without any classification.

Q: Why do not you provide a key to the selection of ordination methods, similarly to the re-

semblance coefficients? This would be very helpful for the novice, I think.

A: I agree that such a vehicle is useful, although some choices were already shown in the
flowchart of Figure 0.1. Here follows an extended key, which is of course just one of the many
possibilities: key construction is always arbitrary.

1a The objects or variables are assigned into groups a priori (canonical methods)...................... 2

1b There is no such grouping .........................................................................................................5

2a The objects are grouped into two or more clusters according to a criterion not included
in the study, whereas there is no division for the variables ....................Discriminant analysis

2b The variables from two groups, the objects form one ............................................................. 3

3a There is a symmetric relationship between the two groups of
variables .................................................................................Canonical correlation analysis

3b The first group of variables constrains the ordination based on the second set ........................4

4a There is an assumed linear relationship between the variables of

the second group .................................................................................... Redundancy analysis

4b Variables in group 2 have an unimodal response to the background
gradient ...........................................................................Canonical correspondence analysis

5a A dissimilarity (distance) matrix for the objects is available only, or the ordination
of variables is irrelevant, even though we have access to the original data ...........................6

5b The ordinations of objects and variables are both required ......................................................7

6a The metric information is retained in the ordination .................Principal coordinates analysis

6b The metric information is lost, only the rank order of dissimilarities
matters ..........................................................................Non-metric multidimensional scaling

7a The variance shared by variables is explained only ...........................................Factor analysis

7b The ordination accounts for the total variance ..........................................................................8

8a The data structure is approximately linear .................................Principal components analysis

8b The data structure is unimodal, the scores are frequencies ................Correspondence analysis

This key does not imply that a single method is appropriate only in a given study. The same
data set should always be analyzed by alternative methods, otherwise many properties of the
data remain unrevealed.

Q: It seems to me that the arch (or horseshoe) effect manifests itself only in ecological ordina-

tions characterized by long background gradients with high beta diversity. Is there any dan-

ger of getting curved arrangements in taxonomic or morphological ordinations?

A: This ‘effect’ is not exclusive to ecological ordinations and the only ‘danger’ is the inappro-
priate use of methods. For example, Reyment (1991: 51) shows the principal coordinates ordi-
nation of Leptograpsus crabs in which the individuals are arranged along an almost perfect
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parabola, although the input data were linear! The authors explanation (“very high correla-
tions among almost equal variables”) is obviously insufficient. I have repeated the analysis
with other coefficients, and it turned out soon that from Euclidean distances the correct ar-
rangement along a single dimension resulted. Also, if PCoA was performed from squared

Gower coefficients the data proved to be one-dimensional. Recall that PCoA has to be
launched from squared distances or dissimilarities – so that the Gower-formula is in fact dis-
tance rather than dissimilarity (just like the Manhattan metric, which is implied in Gower’s
formula). The conclusion is that Reyment’s result was a true artefact, arising from an incorrect
use of the method.

I just came across a recent suggestion (De’ath 1999) which may circumvent the problem
of detrending in ecological ordinations. The method of principal curves originally proposed
by Hastie & Stuetzle (1989) uses an iterative algorithm to fit an irregular curve on the points of
the ordination scattergram. This curve may then be used as an abstract representation of the
underlying one-dimensional gradient.

Q: The obligate question: can we construct series in ordination spaces?

A: Yes, I expected this question, and – not very surprisingly – my answer is positive. In addi-
tion to series generated in the ordination space by data transformation or by regular changes
applied to the sampling strategy, there are possibilities of modifying the ordination algorithm
successively. That is, the primary series is in the ordination space, rather than in the data or the
topogaphic space. In the discussion of correspondence analysis, you could already see that the

value of � is freely modified within certain limits. Thus, we can generate a series of ordina-

tions in the function of�, and this series will be more informative than a single ordination per-

taining to an arbitrarily chosen value of �. Similar parameter has to be defined by the user in
the catenation method proposed by Noy-Meir (1974). For creating the biplot, we can also
imagine a series: recall the Euclidean and the Mahalanobis biplots which, as Jackson (1991)
asserts, are only extreme cases of a ‘biplot gradient’ whose members can be obtained simply
by successively changing an exponent.

Q: The section on morphometric ordination ‘hangs out’ from this chapter, I think. You talk a

lot more on new data types (contour, landmarks, etc.) than on ordination itself. The ordination

procedures that could be applied to new morphometrics are in fact the same as those dis-

cussed previously.

Q: I admit that you are more or less right! However, I felt that – provided that someone reads
this book from the beginning page by page – the reader becomes ready to digest this subject
only at this point. When the procedures of classification and ordination are known, then may
come the more advanced subject. Using the new terminology, the description of shape in
Chapter 2 would have been too early, I think.

Q: What is the solution if I have more than the usual species � sites data? I can easily imagine

a project running for several years, providing data in form of a species � sites � points of time

matrix. Evidently, you forgot about this possibility, while in biology the appearance of such tables

may be quite common.

A: You are right, I did not even mention this possibility yet. There are many possibilities for
analyzing such three-way (rather than three-dimensional!) data arrays. First of all, the array
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can be sliced into conventional matrices according to either time, space or species, and then
these matrices can be analyzed in the usual manner. For example, if separate analyses are per-
formed for data pertaining to different points of time, then the resulting ordinations may be
compared in a subsequent meta-analysis (see Chapter 9) to reveal the temporal trends in your
data. A “quick-and-dirty” procedure is to expand each two-way ‘slice’ of the data into a vec-
tor, put them into a matrix and then do an ordination from this new data file (an example was
the relative warp analysis). More elegant is of course the use of the non-metric method of
INDSCAL (Carroll & Chang 1970) developed for this very purpose. Alternatives include the
three-way extensions of factor analysis (PARAFAC; Harshman 1970, Tucker 1972) and cor-
respondence analysis (Carlier & Kroonenberg 1996). Needless to say that PCA also has a
three-way form (Kroonenberg 1983). In these papers the terminology is not biological, mak-
ing our job a little more difficult than ever. In this book, I have no space to present more de-
tails, however.
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