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Response to Reviewers: Comments from the Reviewers:

Reviewer #1: Authors propose a framework for defining different kind of dissimilarities
when missing data are present. The work can be very useful for practitioners, since it is
also accompanied by software. It is very well- explained and clear.

I have only minor points:

*I miss a very well-known and old reference, Dixon (1979) about missing data that also
propose to compute distance between two vectors with missing cells and then
normalize to compensate for blanks. Furthermore, as stated in that work, it is
preferable because of its consistent performance, ease of implementation, and fast
running speed.  I think that reference should be commented.

Dixon, J. K. (1979). Pattern recognition with partly missing data. IEEE Transactions on
Systems, Man, and Cybernetics 9 (10), 617-621.

This important reference, which we did not know earlier, is added to the paper at
several places. More importantly, his “Normal” method for scaling up unbounded
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measures has been included in both packages….
the modified text:
“Alternatively, unbounded measures can be scaled up (the “Normal” method of Dixon,
1979; Datta et al., 2018) according to n/Wjk, the ratio of the number of all variables to
those known for a given pair of objects.  Dixon (1979) found that this operation greatly
improved the results, therefore we also offer this option for the Euclidean, and
Manhattan metrics and the Faith’s intermediate coefficient. “

The Partial Distance Strategy (PDS) is implemented in a very well-known R package:
in daisy function of cluster package.
Yes, we have checked this. In daisy Euclidean distance and Manhattan distance are
available only. The scaling up operation is adapted, but thy use the square root of the
ratio when multiplying Euclidean distances, while we use the raw ratio instead for all 3
functions concerned (Euclidean, and Manhattan metrics and the Faith’s intermediate
coefficient).

*p.7, l.151: "by" is missing in "given by Tamás et al. (2001).
Done

*p. 7, l.157: More works that also defend the idea that directly estimating distances
result in more accurate results than calculating distances from an imputed data set is
Eirola et al. (2013).
We now cite this paper.

Eirola, E., G. Doquire, M. Verleysen, and A. Lendasse (2013). Distance estimation in
numerical data sets with missing values. Information Sciences 240, 115 - 128.

*p.9, l.183:  could you, please, give a certain value about what is considered a high
missingness ratio?
Of course, there is no objectively defined threshold, so we rephrased the sentence:

“…missing scores / nm) is considered to be high.”

*p.9, l.185 and 186: a small answer is explored in Epifanio (2020): results obtained in
an unsupervised statistical learning methodology by using imputation, PDS with
multidimensional scaling or other alternatives are compared. They show that using
PDS is a very competitive alternative.

I. Epifanio, M.V. Ibáñez and A. Simó (2020) Archetypal Analysis with Missing Data:
See All Samples by Looking at a Few Based on Extreme Profiles, The American
Statistician, 74(2), 169–183.

This work is now cited here.

*p.13, l. 282: please remove the end bracket.
done

*p.13 , l. 287: please remove the intro space.
corrected

*Although not essential, but I find recommendable to include the R function in an R
package in CRAN for being used easier by analysts.

Yes, we plan to do that if the ms is accepted for publication in Ecological Informatics.

Reviewer #2:
This manuscript addresses an important issue of resemblance indices applied in
community ecology, namely how to deal with missing values. While modifications of a
few resemblance indices had been previously proposed by others, the authors
generalize here the formulation of a panoply of indices to incomplete data, filling an
important gap in the area.

I would suggest the authors to contact J. Oksanen (if they haven't already) to replace
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the calculation of resemblance indices with missing data in the R package 'vegan' to
include this proposal, for function 'vegdist()'. The current implementation of pairwise
deletion may give the same result for some indices, but fails with others (e.g. chord).

Yes, we think that we would contact vegan authors only if the ms is accepted for
publication in Ecological Informatics.

I also have a suggestion for the presentation of indices. I present the cross-product
Ajj(k) not with Ajk, but in section 3 below Tj(k). Ajj(k) is the square of the vector norm
for object j, and could be named Aj(k). In this way, it is shown the chord distance can
be calculated from the Euclidean distance, and the chord and hellinger transformations
are analogous.

The reviewer is right in stating that it is also possible to present Ajj(k) with Tj(k) and not
with Ajk. However, we keep the original way of presentation because we can present
15 resemblance coefficients with Ajj(k) and without Tj(k). The introduction of Tj(k) is
required only for indices incorporating standardization (section 3.1). We argue that the
distinction between Ajk and Ajj(k) is extremely important. The first is the cross-product
for two vectors j and k for all variables that are known for both j and k. The second term
corresponds to the cross-product (norm) of j with itself based on data that are also
known for observation k. In other words, Ajj(k) differs with k, because it would not be
logical to use the same cross-product for all comparisons.  The index jj(k) expresses
this better than j(k).

I liked your discussion about the effect of unbalanced ressemblance on multivariate
analyses. Your arguments about agglomerative hierarchical clustering seem fine to
me, but what will happen with divisive hierarchical clustering, or non-hierarchical (e.g.
k-means) clustering? In the latter, negative distances to the centroids could arise.

There is a study (Himmelspach, L., & Conrad, S. (2010). Clustering approaches for
data with missing values: Comparison and evaluation. 2010 Fifth International
Conference on Digital Information Management (ICDIM)) evaluating the performance
of k-means and fuzzy c-means with various levels of missing data. Since these
strategies do not use direct resemblances between data points we felt that the
discussion of this area would be far beyond the scope of our ms.

Miquel De Cáceres

*****
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cross-product (norm) of j with itself based on data that are also known for observation k. In 
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MethodsX (optional) 

 

We invite you to submit a method article alongside your research article. This is an 

opportunity to get full credit for the time and money spent on developing research methods, 

and to increase the visibility and impact of your work. If your research article is accepted, we 

will contact you with instructions on the submission process for your method article to 

MethodsX. On receipt at MethodsX it will be editorially reviewed and, upon acceptance, 

published as a separate method article. Your articles will be linked on ScienceDirect.  

 

Please prepare your paper using the MethodsX Guide for Authors: 

https://www.elsevier.com/journals/methodsx/2215-0161/guide-for-authors (and template 

available here: https://www.elsevier.com/MethodsX-template) Open access fees apply. 
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ABSTRACT 7 

 Large ecological data matrices may be incomplete for various reasons, preventing the use of 8 

standard multidimensional scaling (ordination) and cluster analysis packages. Although there 9 

exist a few resemblance functions that allow missing scores, there is no theoretical 10 

background and software support for most distance and similarity coefficients potentially 11 

applied in multivariate data analysis. We provide a general framework for a precise 12 

mathematical redefinition of a large set of resemblance functions originally developed for 13 

complete data sets with presence-absence (binary) or ratio-scale variables. Included are 14 

coefficients which consider double absences in abundance data. Potential problems with the 15 

use of these functions are discussed, with the conclusion that incompleteness of data would 16 

rarely if ever influence greatly the interpretability of ordinations and classifications. An R 17 

function described in the Appendix represents a link to R. We also provide a stand-alone 18 

WINDOWS application for users of other computer programs. The new software will allow 19 

users of standard data analysis packages to perform multivariate analysis using a wide variety 20 

of resemblance coefficients even if the data are incomplete for whatever reason. 21 

Keywords: Cluster analysis; Distance; Dissimilarity; Missing data; Ordination; Similarity 22 

1. Introduction 23 

Ecological data matrices are often incomplete because some scores are unknown for a variety 24 

of reasons. Data entries may be missing due to measurement errors, unavailability or loss of 25 

parts of the observations, malfunctioning of recording devices and human mistakes (Sneath 26 

and Sokal, 1973, p. 178; Dixon, 1979; Legendre and Legendre, 2012, p. 54). Furthermore, 27 
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incompleteness may also be caused by variables that are undefined, illogical and inapplicable 28 

to certain objects or observations, for example, seed mass for ferns in a matrix of plant 29 

functional traits. These two situations are distinguished as unstructured and structured 30 

missingness, respectively (Chechik et al., 2008, Zhang et al., 2012). Incomplete data have 31 

long been a source of nuisance to users of multivariate methods because the absence of even 32 

a single value from the data matrix prevents the use of standard ordination and clustering 33 

techniques. The vast majority of multivariate methods operate via calculating resemblance 34 

(sensu Orloci, 1972, referring in general to any type of distances, dissimilarities, similarities, 35 

correlation, association or proximity measures) among the study objects (in multidimensional 36 

scaling and cluster analysis) or variables (principal components analysis) which requires full 37 

data arrays in most computer implementations currently in use.   38 

There are several methods to circumvent the problem of missingness. As a brute force 39 

solution, removing entire rows and/or columns from the data matrix may come to our mind. 40 

In this way large amounts of data may be lost, and therefore removals are not recommended. 41 

Instead, empty cells in the data array may be filled by estimation or simulation, called 42 

imputation, an option most often used in ordination studies (Legendre and Legendre, 2012, 43 

Dray and Josse, 2015). Although many relatively simple (e.g., k-nearest neighbour, Dixon, 44 

1979) and more sophisticated algorithms have been suggested for this purpose (Nelson et al., 45 

1996; Grung and Manne, 2005; Oba et al., 2005; Stanimirova et al., 2007; Serneels and 46 

Verdonck, 2008), have been suggested for this purpose, imputation remains arbitrary for 47 

many, and is illogical to use in case of structured missingness. The third option is to estimate 48 

distances between observations with missing data from other distance values, rather than 49 

from the data (Eirola et al. 2013).  Finally, to calculate each resemblance value may be 50 

calculated based on all available information, i.e., using the subset of data that are known for 51 

both items being compared (Partial Distance Strategy, PDS, Dixon, 1979). This approach was 52 
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first taken by Gower (1971) in developing a general function of dissimilarity which is often 53 

used in multidimensional scaling and clustering. This measure corresponds to the mean 54 

character difference for range-standardized ratio-scale variables and to the complement of the 55 

Jaccard index or the simple matching coefficient for presence-absence data. The idea was 56 

also adapted subsequently to range-standardized Euclidean distance (Dixon, 1979) and its 57 

range-standardized version (Podani, 1980, Wills, 1998), to the Manhattan metric (Wishart, 58 

2003), as well as to a modified product moment correlation coefficient and covariance 59 

(Legendre and Legendre, 2012, Dray and Josse, 2015, Podani et al., 2021) which serve as a 60 

basis for computing principal component analysis. However, researchers may want to select 61 

other formulae from the large arsenal of resemblance coefficients – but those are not yet 62 

modified for this purpose and no computer program is available for their calculation. This 63 

paper provides a brief theory of generalizing resemblance coefficients to incomplete data and 64 

introduces an R function developed for computations. Emphasis is placed on functions 65 

applicable to ratio-scale variables, and to presence-absence coefficients. 66 

2. Basic notations 67 

Most of the resemblance coefficients available in the statistical literature apply to ratio-scale 68 

variables (Anderberg, 1973) for which all basic arithmetic operations (summation, 69 

subtraction, multiplication, and division) are meaningful. First, we shall be concerned with 70 

such variables. Let X ≡ {xij} denote the data matrix with n rows corresponding to variables, 71 

features or descriptors (e.g., species, functional traits or morphological characters) and m 72 

columns representing objects (e.g., sample units, individuals or other entities of interest). 73 

Another array of the same size, V ≡ {vij} is an indicator matrix in which vij = 1 if xij is known, 74 

and vij = 0 otherwise. Based on these indicator scores, for each variable i and every pair of 75 

objects, j and k, we can calculate the weight wijk = vij vik which is zero whenever the two 76 

objects are incomparable for that variable due to incomplete information and equals to 1 77 
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otherwise. To allow mathematical formalism, assume that lacking scores are represented by a 78 

negative dummy value in the data matrix, such as –1, depending on computer program 79 

implementation. 80 

2.1. A new set of parameters 81 

Although all resemblance coefficients can be formulated directly using denotations of raw 82 

scores, indicator values and weights, we feel that for simplicity, for ease of calculations and 83 

for generalization purposes a new set of six parameters will be useful. Each of them expresses 84 

some relationship of objects j and k by considering only those variables that are known for 85 

both. These parameters will be abbreviated by capital letters subscripted with j and k, as 86 

follows: 87 

Sum of squared differences: 𝐸𝑗𝑘 = ∑ 𝑤𝑖𝑗𝑘(𝑥𝑖𝑗 − 𝑥𝑖𝑘)
2

𝑖      88 

Sum of absolute differences: 𝑀𝑗𝑘 = ∑ 𝑤𝑖𝑗𝑘|𝑥𝑖𝑗 − 𝑥𝑖𝑘|
 

𝑖  89 

Sum of differences: 𝐺𝑗𝑘 = ∑ 𝑤𝑖𝑗𝑘(𝑥𝑖𝑗 − 𝑥𝑖𝑘)𝑖  90 

Sum of weights: 𝑊𝑗𝑘 = ∑ 𝑤𝑖𝑗𝑘  
 

𝑖  91 

Sum of minima: 𝐹𝑗𝑘 = ∑ 𝑤𝑖𝑗𝑘min{𝑥𝑖𝑗 , 𝑥𝑖𝑘} 
 

𝑖  92 

Sum of maxima: 𝐻𝑗𝑘 = ∑ 𝑤𝑖𝑗𝑘max{𝑥𝑖𝑗 , 𝑥𝑖𝑘} 
 

𝑖  93 

Cross product: 𝐴𝑗𝑘 = ∑ 𝑤𝑖𝑗𝑘𝑥𝑖𝑗  𝑥𝑖𝑘 
 

𝑖  ;  𝐴𝑗𝑗(𝑘) = ∑ 𝑤𝑖𝑗𝑘𝑥𝑖𝑗
2  𝑖  94 

 95 

3. Formulae for ratio-scale variables and their presence-absence variants 96 

Using the six parameters described above, many resemblance coefficients can be rewritten to 97 

cope with incomplete data sets. These are summarized in Table 1 in their original and 98 
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modified form as well. If the data matrix contains presence-absences such that xij = 1 stands 99 

for presence and xij = 0 for absence of variable i in object j, then the results produced by these 100 

functions will be identical to those provided by coefficients explicitly developed for 101 

presence-absence (binary) data. These latter coefficients are written in terms of the 2 × 2 102 

contingency table in which a stands for the number of mutual presences, b is the number of 103 

variables (e.g. species) present in object j but absent from object k, c is the number of 104 

variables present in object k but absent from object j, and d is the number of variables absent 105 

from both j and k, but present in at least one object in the data set.   106 

3.1. Indices incorporating standardization 107 

Coefficients that do not fit directly the system outlined in Table 1 use some type of 108 

standardization over objects or variables. Fortunately, after modifying the original scores 109 

using the following auxiliary parameters, the new values, denoted by  𝑥𝑖𝑗
′  may be substituted 110 

into an appropriate equation of the table. The auxiliary parameters are given below. 111 

Range of variable i for all known data:   𝑅𝑖 = max𝑗{𝑣𝑖𝑗𝑥𝑖𝑗} − min𝑗{𝑣𝑖𝑗𝑥𝑖𝑗} 112 

Total of object j in relation to k:   𝑇𝑗(𝑘) = ∑ 𝑤𝑖𝑗𝑘𝑥𝑖𝑗  
 

𝑖  113 

Variable total:   𝑉𝑖 = ∑ 𝑣𝑖𝑗𝑥𝑖𝑗  
 

𝑗  114 

As seen, if normalization is over the objects being compared, then we use the weight wijk to 115 

include variables that are known for both objects. That is, object total Tj(k) is applicable to this 116 

pair only. If standardization is over variables, then we use the weight vij so that we consider 117 

all available data for calculation. Variable total Vi is therefore valid for all pairs of objects.  118 

Then, some notable coefficients will correspond to equations in the table as follows:  119 

Gower distance (GOW) for ratio-scale variables is eq. (3) with 𝑥𝑖𝑗
′ = 𝑥𝑖𝑗

 / 𝑅𝑖 120 
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Hellinger distance (HEL) is eq. (1) with 𝑥𝑖𝑗
′ = √𝑥𝑖𝑗

 /𝑇𝑗(𝑘)   121 

Canberra metric (CAN) is eq. (2) with 𝑥𝑖𝑗
′ =

𝑥𝑖𝑗
 

|𝑥𝑖𝑗+𝑥𝑖𝑘|
if |𝑥𝑖𝑗 + 𝑥𝑖𝑘| > 0     122 

  123 

                                                                        otherwise 𝑥𝑖𝑗
′ = 0 124 

Kulczynski index (KUL) is eq. (12) with 𝑥𝑖𝑗
′ =

𝑥𝑖𝑗
 

(𝑇𝑗(𝑘)+𝑇𝑘(𝑗))/2
 125 

Chi-square distance (CHI) is eq. (1) with 𝑥𝑖𝑗
′ =

𝑥𝑖𝑗
 

𝑉𝑖𝑇𝑗(𝑘)
 126 

Renkonen index (REN) is eq. (12) with 𝑥𝑖𝑗
′ =

𝑥𝑖𝑗
 

𝑇𝑗(𝑘)
 127 

Note that 𝑥𝑖𝑗
′  and 𝑥𝑖𝑘

′  refer only to the pair j, k of objects. Furthermore, there are a couple of 128 

functions which may be expressed using the new parameters and/or 𝑥𝑖𝑗
′  but do not correspond 129 

to any equation in Table 1: 130 

Coefficient of divergence (DIV) is given by √
𝐸𝑗𝑘

𝑊𝑗𝑘
  with  𝑥𝑖𝑗

′ =
𝑥𝑖𝑗
 

|𝑥𝑖𝑗+𝑥𝑖𝑘|
if |𝑥𝑖𝑗 + 𝑥𝑖𝑘| > 0        131 

        otherwise 𝑥𝑖𝑗
′ = 0 132 

Covariance for objects becomes  𝐶𝑂𝑉𝑗𝑘 = 
𝐴𝑗𝑘−

𝑇𝑗(𝑘)𝑇𝑘(𝑗)

𝑊𝑗𝑘
 

𝑊𝑗𝑘
 −1

   133 

Correlation between objects is 𝐶𝑂𝑅𝑗𝑘 =
𝐴𝑗𝑘−

𝑇𝑗(𝑘)𝑇𝑘(𝑗)

𝑛

√(𝐴𝑗𝑗(𝑘)−
𝑇𝑗(𝑘)
2

𝑊𝑗𝑘
 )(𝐴𝑘𝑘(𝑗)−

𝑇𝑘(𝑗)
2

𝑊𝑗𝑘
 ) 

   134 

 135 

3.2. Backward extensions to ecological abundances 136 

Table 1 shows presence/absence coefficients to which ratio-scale formulae are reduced when 137 

the data set contains only 1-s and 0-s. Generalization may be achieved in the reverse direction 138 
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as well, with meaningful applications in ecological data analysis. According to Tamás et al. 139 

(2001), coefficients for presence-absence data in which parameter d is used can be extended 140 

to abundance data (i.e. ratio-scale variables). Between two localities or sites j and k, a’ 141 

corresponds to overlap in abundances and b’ + c’ is the symmetric difference – these are 142 

directly comparable to the classical 2 × 2 contingency table parameters a, and b + c. 143 

Parameter d, the number of “double zeros” or double absences may be understood here as the 144 

“potential abundance that could be reached in the study area” (Tamás et al., 2001) and is 145 

calculated as the sum of differences between the maxima in j and k and the maxima reached 146 

in the entire sample:  147 

Overlap: 𝑎′ = 𝐹𝑗𝑘   148 

Difference in favour of site j: 𝑏′ = ∑ 𝑤𝑖𝑗𝑘(max{𝑥𝑖𝑗 , 𝑥𝑖𝑘} − 𝑥𝑖𝑘) 
 

𝑖  149 

Difference in favour of site k: 𝑐′ = ∑ 𝑤𝑖𝑗𝑘(max{𝑥𝑖𝑗 , 𝑥𝑖𝑘} − 𝑥𝑖𝑗) 
 

𝑖  150 

“Potential” abundance: 𝑑′ = ∑ 𝑤𝑖𝑗𝑘   (max𝑗{𝑣𝑖𝑗𝑥𝑖𝑗} − max{𝑥𝑖𝑗 , 𝑥𝑖𝑘} )𝑖  151 

Total: n’ = a’ + b’ + c’ + d’ = ∑ max𝑗{𝑣𝑖𝑗𝑥𝑖𝑗}𝑖  152 

These parameters may be substituted into coefficients formerly applied only to the presence-153 

absence case. There are many indices which incorporate the d parameter, Table 2 is a list of 154 

ten such functions also given by Tamás et al. (2001). The reader may also consult with 155 

Goodall (1973), Ludwig and Reynolds (1988), and Kenkel and Booth (1987) for more. 156 

6. Discussion 157 

The new mathematical formalism developed in this paper allows precise redefinition of many 158 

resemblance coefficients to be calculated in multivariate analysis of incomplete data sets. A 159 

summary of mathematical details is presented in Electronic Supplement 2. The use of these 160 

modified forms frees the data analyst from the drastic operation of data reduction and the 161 
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arbitrary solution of imputation: each pair of coefficients is calculated based on the maximum 162 

amount of information available in the dataset. That is, our approach corresponds to the 163 

Partial Distance Strategy formerly suggested for a small subset of distance metrics, now  164 

extended to a wide range of coefficients.  165 

We first defined seven parameters, E, M, G, W, F, H and A to express various aspects of 166 

mutual relationships between two objects to be used in compact mathematical formulae for 167 

15 resemblance coefficients. Most of these equally apply to presence-absence data with 168 

binary coding. Three other parameters, R, T, and V are used for standardization, after which 169 

further six coefficients become identical to one of the above-mentioned formulae, and three 170 

additional ones are defined. The framework may also be used to generalize presence-absence 171 

coefficients that count double zeros (d) to abundance data. Although we were concerned with 172 

ratio-scale and presence-absence variables, the idea presented here can be readily applied to 173 

coefficients for nominal and ordinal scale types as well. Further index families may also be 174 

modified, such as the coefficients of similarity between ecological sample plots in which 175 

species similarities are also accounted for (Ricotta and Pavoine, 2015; Ricotta et al., 2016; 176 

Podani et al., 2018). 177 

The present approach implies that pairwise comparisons are based on different numbers of 178 

variables, and we can say that the resemblance matrix is therefore “unbalanced”. This is 179 

unavoidable in case of structured missingness, when the actual values themselves are the best 180 

estimates of between-object resemblance. Unstructured missingness may be handled in 181 

different ways. If the resemblance function is bounded, such as the chord distance between 0 182 

and √2  and the Bray-Curtis dissimilarity between 0 and 1, then it follows that each “true” 183 

resemblance value (i.e., if all variables were known) may be either under- or overestimated 184 

and there is a chance that deviations compensate one another. If there is no upper bound (e.g. 185 

Euclidean distance) then distances calculated from a reduced number of variables will never 186 
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overestimate the true value. One must consider this potential systematic bias when selecting a 187 

coefficient and we recommend a bounded measure when the missingness ratio (no. of 188 

missing scores / nm) is considered to be high. Alternatively, unbounded measures can be 189 

scaled up (the “Normal” method of Dixon, 1979; Datta et al., 2018) according to n/Wjk, the 190 

ratio of the number of all variables to those known for unobserved values for eacha given pair 191 

of objects. Dixon (1979) found that this operation greatly improved the results, therefore we 192 

also offer this option for the Euclidean, and Manhattan metrics and the Faith’s intermediate 193 

coefficient.  194 

The question of how clustering and multidimensional scaling are affected by unbalanced 195 

resemblances remains to be answered. Earlier studies (e.g., Epifanio et al., 2020) indicated 196 

that in this regard the Partial Distance Strategy is a competitive alternative to other methods. 197 

We can safely say that hierarchical clustering is less prone to any problem in general because 198 

the approach handles the input resemblance matrix without imposing any theoretical, matrix 199 

algebraic restrictions. The relative robustness of clustering is demonstrated, for example, by 200 

the following arguments: 1) within-dendrogram (ultrametric) distances distort the original 201 

distances anyway, 2) several algorithms (e.g., single link, complete link) use only a subset of 202 

resemblances during calculations, and 3) the commonly used strategy of constrained 203 

clustering simply disregards a large subset of resemblance values. Nonmetric 204 

multidimensional scaling is less affected as well because the method relies on the rank order 205 

of resemblances and disregards their differences. Metric multidimensional scaling (principal 206 

coordinates analysis) is more sensitive, however. Due to unbalanced input resemblance 207 

values the object points may not be embedded into a Euclidean space (the matrix is not 208 

positive semi-definite), and the analysis may produce negative eigenvalues as well (Gower 209 

and Legendre, 1986). Whenever these are negligible in magnitude in comparison with the 210 

largest positive eigenvalues, the ordination of points in the first few dimensions remains 211 

Formatted: Font: Italic
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perfectly interpretable (Cailliez and Pagès, 1976). Otherwise, the user may consult with 212 

Legendre and Legendre (2012) or Li (2015) to select a method for adjusting the resemblance 213 

matrix in order to diminish the influence of negative eigenvalues.  214 
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Appendix 1 313 

An R function for calculating resemblance coefficients for incomplete data sets  314 

The incomp function (Electronic Supplement 1) is based on the vegan package. It requires 315 

(1) a data matrix as an input file (in agreement with R, rows are the observations or objects, 316 

columns are the variables (characters, traits), the cells contain ratio-scale or presence/absence 317 

data with missing data (coded as NA), (2) information about the method (see also Electronic 318 

Supplement 2 for abbreviations), and whether ratio-scale or binary calculation should be 319 

performed (binary= TRUE or FALSE). The output of the function is matrix. 320 

 321 
#required packages 322 
require(vegan) 323 
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 324 
#example data 325 

data(varespec) 326 
data1<-(varespec) 327 
 328 
#insert some missing data 329 

data1$Callvulg[1]<-NA 330 
data1$Empenigr[2]<-NA 331 
data1$Rhodtome[3]<-NA 332 

 333 
#save as matrix 334 
x<-as.matrix(data1) 335 
 336 

#run the function 337 
incomp(x, method="EUC", binary=FALSE) 338 

 339 

Appendix 2 340 

 INDARES: WINDOWS application 341 

For users unfamiliar with R, we provide a stand-alone application, INDARES.EXE, which 342 

runs under WINDOWS operation systems. The input for this program is a text file in which 343 

the first row is a label, the second row contains two integers, the number of rows and the 344 

number of columns. Then follows the data matrix, with each of its rows starting in a new line 345 

in the file. Missing scores are coded by –1. The user is prompted for the name of the input 346 

filename, for an option to decide whether rows or columns are to be compared and finally for 347 

selecting the option for resemblance function, numbers 1-34, which follow the same sequence 348 

as in Electronic Supplement 2. Before calculations, the program checks whether all pairs of 349 

objects are comparable, and potentially stops with a list of pairs which do not have a single 350 

known variable in common. Computations may only be performed if all pairs of objects are 351 

comparable. The Euclidean and Manhattan metrics and Faith’s intermediate coefficient do 352 

not have upper bound, and these can be scaled up upon request by multiplication with the 353 

ratio of the number of all and observed values for each pair of objects. The resulting matrix 354 

may be saved in full format or as a lower semimatrix with the diagonal values included. If the 355 
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formula is a similarity (e.g., Renkonen), correlation or association (e.g. Yule) coefficient, the 356 

user is also asked if the values are to be converted into dissimilarities for output. If it contains 357 

a semimatrix of distances or dissimilarities, the save file MATRIX.TXT may be directly 358 

input to the SYN-TAX 2000 multivariate analysis package (Podani 2001). INDARES.EXE 359 

and the SYN-TAX 2000 modules may be downloaded from 360 

http://podani.web.elte.hu/SYN2000.html.  361 

  362 

http://podani.web.elte.hu/SYN2000.html
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Table 1. Resemblance coefficients for complete and incomplete data matrices. Most 363 

coefficients for incomplete data are meaningful for binary data as well with xij = 1 for 364 

presence and xij = 0 for absence.  365 

No. 

Complete data Incomplete data 

Ratio scale Presence/absence Both types 

Name/Author 

and 

abbreviation 

Formula Name/Author Formula Formula 

1. 

Euclidean 

distance – 

EUC 
√∑(𝑥𝑖𝑗 − 𝑥𝑖𝑘)

2

𝑖

 Euclidean 

distance 
√𝑏 + 𝑐 √𝐸𝑗𝑘 

2. 

Manhattan 

(city block) – 

MAN 

∑|𝑥𝑖𝑗 − 𝑥𝑖𝑘|
 

𝑖

 

Symmetric 

difference,  

Hamming 

distance 

b + c Mjk 

3. 

Mean 

character 

difference – 

MCD 

1

𝑛
∑|𝑥𝑖𝑗 − 𝑥𝑖𝑘|

 

𝑖

 
Simple 

matching 

dissimilarity 

𝑏 + 𝑐

𝑛
 

 𝑀𝑗𝑘

 𝑊𝑗𝑘  
 

4. 
Ruzicka – 

RUZ 

∑ min{𝑥𝑖𝑗 , 𝑥𝑖𝑘}𝑖

∑ max{𝑥𝑖𝑗 , 𝑥𝑖𝑘}𝑖  
 

Jaccard 

similarity 

𝑎

𝑎 + 𝑏 + 𝑐
 

 𝐹𝑗𝑘

 𝐻𝑗𝑘 
 

5. 
Similarity 

ratio – SR 

∑ 𝑥𝑖𝑗  𝑥𝑖𝑘𝑖

∑ 𝑥𝑖𝑗
2  𝑖 + ∑ 𝑥𝑖𝑘

2  𝑖 −∑ 𝑥𝑖𝑗 𝑥𝑖𝑘𝑖  
 

 𝐴𝑗𝑘

 𝐴𝑗𝑗(𝑘)+ 𝐴𝑘𝑘(𝑗) − 𝐴𝑗𝑘  
 

6. 

Marczewski 

& Steinhaus – 

MS 

∑ |𝑥𝑖𝑗 − 𝑥𝑖𝑘|𝑖

∑ max{𝑥𝑖𝑗 , 𝑥𝑖𝑘}𝑖  
 

Jaccard 

dissimilarity 

𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐
 

 𝑀𝑗𝑘

 𝐻𝑗𝑘 
 

7. 

Bray & Curtis 

similarity – 

BCS 

2∑ min{𝑥𝑖𝑗 , 𝑥𝑖𝑘}𝑖

∑ (𝑥𝑖𝑗 + 𝑥𝑖𝑘)𝑖  
 

Sörensen 

similarity 

2𝑎

2𝑎 + 𝑏 + 𝑐
 

 2𝐹𝑗𝑘

 𝐹𝑗𝑘 + 𝐻𝑗𝑘  
 

8. 

Bray & Curtis 

dissimilarity 

– BCD 

∑ |𝑥𝑖𝑗 − 𝑥𝑖𝑘|𝑖

∑ (𝑥𝑖𝑗 + 𝑥𝑖𝑘𝑖 ) 
 

Sörensen 

dissimilarity 

𝑏 + 𝑐

2𝑎 + 𝑏 + 𝑐
 

 𝑀𝑗𝑘

 𝐹𝑗𝑘 + 𝐻𝑗𝑘  
 

9. 

Chord 

distance – 

CHO 
√2

(

 1 −
∑ 𝑥𝑖𝑗 𝑥𝑖𝑘𝑖

√∑ 𝑥𝑖𝑗
2  𝑖 ∑ 𝑥𝑖𝑘

2  𝑖  
)

  
Chord 

distance 
√2(1 −

𝑎

√(𝑎 + 𝑏)(𝑎 + 𝑐) 
) √2(1 −

𝐴𝑗𝑘

√𝐴𝑗𝑗(𝑘)𝐴𝑘𝑘(𝑗) 
) 

10. 

Angular 

separation – 

ANG 

1 −
∑ 𝑥𝑖𝑗 𝑥𝑖𝑘𝑖

√∑ 𝑥𝑖𝑗
2  𝑖 ∑ 𝑥𝑖𝑘

2  𝑖  

 
Ochiai 1 −

𝑎

√(𝑎 + 𝑏)(𝑎 + 𝑐) 
 1 −

𝐴𝑗𝑘

√𝐴𝑗𝑗(𝑘)𝐴𝑘𝑘(𝑗) 
 

11. 
Geodesic 

metric – GEO 

arc cos
∑ 𝑥𝑖𝑗 𝑥𝑖𝑘𝑖

√∑ 𝑥𝑖𝑗
2  𝑖 ∑ 𝑥𝑖𝑘

2  𝑖  

 
- - arc cos

𝐴𝑗𝑘

√𝐴𝑗𝑗(𝑘)𝐴𝑘𝑘(𝑗) 
 

12. 

Kendall 

similarity – 

KEN 

∑min{𝑥𝑖𝑗 , 𝑥𝑖𝑘}

𝑖

 Overlap a 𝐹𝑗𝑘  

13. 

Faith 

intermediate 

coefficient – 

FA1 

0.5 ∑ ( |𝑥𝑖𝑗 − 𝑥𝑖𝑘|
 

𝑖 +

max{𝑥𝑖𝑗 , 𝑥𝑖𝑘}   −

 min{𝑥𝑖𝑗 , 𝑥𝑖𝑘}) 

Symmetric 

difference 
b + c 0.5(𝑀𝑗𝑘 + 𝐻𝑗𝑘 − 𝐹𝑗𝑘) 

14 
Penrose 

shape – P1 

1

𝑛 − 1
∑(𝑥𝑖𝑗 − 𝑥𝑖𝑘)

2

𝑖

−
1

𝑛2 − 𝑛
(∑𝑥𝑖𝑗 − 𝑥𝑖𝑘

 

𝑖

)2
 

 

- - 

1

𝑊𝑗𝑘 − 1
𝐸𝑗𝑘

−
1

𝑊𝑗𝑘
2 −𝑊𝑗𝑘

 𝐺𝑗𝑘
2  

15 
Penrose size 

– P2 

1

𝑛2
(∑𝑥𝑖𝑗 − 𝑥𝑖𝑘

 

𝑖

)2 - - 
1

𝑊𝑗𝑘
2 𝐺𝑗𝑘

2  

 366 
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Table 2. List of presence-absence coefficients extended to incomplete abundance data. See 367 

text for the meaning of a’, b’, c’, d’ and n’. 368 

No. 
Name/Author 

and abbreviation 
Formula 

1. Simple matching – SM 
𝑎′ + 𝑑′

𝑛′
 

2. Rogers & Tanimoto – RT 
𝑎′ + 𝑑′

𝑎′ + 2𝑏′ + 2𝑐′ + 𝑑′
 

3. Sokal & Sneath – SS1 
2𝑎′ + 2𝑑′

2𝑎′ + 𝑏′ + 𝑐′ + 2𝑑′
 

4. Anderberg 1 – A1 √
𝑎′

𝑎′ + 𝑏′
×

𝑎′

𝑎′ + 𝑐′
×

𝑑′

𝑏′ + 𝑑′
×

𝑑′

𝑐′ + 𝑑′
 

5. Anderberg 2 – A2 
1

4
(

𝑎′

𝑎′ + 𝑏′
×

𝑎′

𝑎′ + 𝑐′
×

𝑑′

𝑏′ + 𝑑′
×

𝑑′

𝑐′ + 𝑑′
) 

6. Faith 2 – FA2 
𝑎′ + 0.5𝑑′

𝑛′
 

7. Russell & Rao – RR 
𝑎′

𝑛′
 

8. 
Raroni-Urbani & Buser – 

BB2 

√𝑎′𝑑′ + 𝑎′

√𝑎′𝑑′ + 𝑎′ + 𝑏′ + 𝑐′
 

9. Yule 1 – Y1 
√𝑎′𝑑′ − √𝑏′𝑐′

√𝑎′𝑑′ + √𝑏′𝑐′
 

10. Yule 2 – Y2 
𝑎′𝑑′ − 𝑏′𝑐′

𝑎′𝑑′ + 𝑏′𝑐′
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